示例#1
0
boost::optional<Unit> UnitFactorySingleton::createUnit(const std::string& unitString,
                                                       UnitSystem system) const
{
  if (m_callbackMaps.size() == 0) {
    LOG(Warn,"UnitFactorySingleton::createUnit called, but the maps appear to be empty.");
  }

  if (!unitString.empty() && !isUnit(unitString)) {
    LOG(Error,unitString << " is not properly formatted.");
    return boost::none;
  }

  OptionalUnit result = createUnitSimple(unitString,system);
  if (result) {
    return *result;
  }

  // no luck--start parsing
  std::string wUnitString(unitString);
  ScaleConstant scale = ScaleFactory::instance().createScale(0);

  if (isScaledUnit(wUnitString)) {
    std::pair<std::string,std::string> scaleAndUnit = decomposeScaledUnitString(wUnitString);
    scale = ScaleFactory::instance().createScale(scaleAndUnit.first);
    if (scale().value == 0.0) {
      LOG(Error,"Scaled unit string " << wUnitString << " uses invalid scale abbreviation "
          << scaleAndUnit.first << ".");
      return boost::none;
    }
    wUnitString = scaleAndUnit.second;
  }

  // wUnitString should now be compound unit
  std::pair< std::vector<std::string>,std::vector<std::string> > atomicUnits =
      decomposeCompoundUnitString(wUnitString);
  // loop through numerator
  std::vector<std::string>::const_iterator atomicUnitIter;
  std::vector<std::string>::const_iterator vectorEnd = atomicUnits.first.end();
  std::pair<std::string,int> atomicUnit;
  for (atomicUnitIter = atomicUnits.first.begin(); atomicUnitIter != vectorEnd; ++atomicUnitIter) {
    // decompose into baseUnit and exponent
    atomicUnit = decomposeAtomicUnitString(*atomicUnitIter);
    // look for baseUnit
    OptionalUnit baseUnit = createUnitSimple(atomicUnit.first,system);
    if (!baseUnit) {
      // decompose into scale, baseUnit
      std::pair<std::string,std::string> scaleAndBaseUnit = extractScaleAbbreviation(atomicUnit.first);
      if (!scaleAndBaseUnit.first.empty()) {
        baseUnit = createUnitSimple(scaleAndBaseUnit.second,system);
        if (!baseUnit) {
          baseUnit = Unit();
          baseUnit->setBaseUnitExponent(scaleAndBaseUnit.second,1);
        }
        baseUnit->setScale(scaleAndBaseUnit.first);
      }
      else {
        baseUnit = Unit();
        baseUnit->setBaseUnitExponent(atomicUnit.first,1);
      }
    }
    baseUnit->pow(atomicUnit.second);
    if (!result) {
      result = baseUnit;
    }
    else {
      result = (*result) * (*baseUnit);
    }
  }
  // loop through denominator
  vectorEnd = atomicUnits.second.end();
  for (atomicUnitIter = atomicUnits.second.begin(); atomicUnitIter != vectorEnd; ++atomicUnitIter) {
    // decompose into baseUnit and exponent
    atomicUnit = decomposeAtomicUnitString(*atomicUnitIter);
    // look for baseUnit
    OptionalUnit baseUnit = createUnitSimple(atomicUnit.first,system);
    if (!baseUnit) {
      // decompose into scale, baseUnit
      std::pair<std::string,std::string> scaleAndBaseUnit = extractScaleAbbreviation(atomicUnit.first);
      if (!scaleAndBaseUnit.first.empty()) {
        baseUnit = createUnitSimple(scaleAndBaseUnit.second,system);
        if (!baseUnit) {
          LOG(Info,scaleAndBaseUnit.second << " is not a registered baseUnit (in the selected system). "
              << "Returning it as-is in a mixed Unit (not SI, IP, etc.).");
          baseUnit = Unit();
          baseUnit->setBaseUnitExponent(scaleAndBaseUnit.second,1);
        }
        baseUnit->setScale(scaleAndBaseUnit.first);
      }
      else {
        LOG(Info,scaleAndBaseUnit.second << " is not a registered baseUnit (in the selected system). "
              << "Returning it as-is in a mixed Unit (not SI, IP, etc.).");
        baseUnit = Unit();
        baseUnit->setBaseUnitExponent(atomicUnit.first,1);
      }
    }
    baseUnit->pow(atomicUnit.second);
    if (!result) {
      baseUnit->pow(-1);
      result = baseUnit;
    }
    else {
      result = (*result) / (*baseUnit);
    }
  }

  BOOST_ASSERT(result);

  // impose overall scale
  if (scale().exponent != 0) {
    ScaleOpReturnType resultScale = scale()*result->scale();
    result->setScale(resultScale.first().exponent);
  }

  return result;
}
示例#2
0
boost::optional<Unit> ScheduleTypeLimits::units(std::string unitType, bool returnIP) {
  boost::to_lower(unitType);
  OptionalUnit result;

  if (unitType.empty() ||
      (unitType == "dimensionless") ||
      (unitType == "availability") ||
      (unitType == "controlmode"))
  {
    if (returnIP) {
      result = IPUnit();
    }
    else {
      result = SIUnit();
    }
    return result;
  }

  char firstLetter = unitType[0];
  switch (firstLetter) {
  case 'a' :
    {
      if (unitType == "activitylevel") {
        result = (createSIPower() / createSIPeople());
      }
      else if (unitType == "angle") {
        result = createIPAngle();
      }
      break;
    }
  case 'c' :
    {
      if (unitType == "capacity") {
        if (returnIP) {
          result = BTUUnit(BTUExpnt(1,0,-1));
        }
        else {
          result = createSIPower();
        }
      }
      else if (unitType == "clothinginsulation") {
        result = Unit();
        result->setBaseUnitExponent("clo",1);
      }
      else if (unitType == "convectioncoefficient") {
        if (returnIP) {
          result = BTUUnit(BTUExpnt(1,-2,-1,-1));
        }
        else {
          result = createSIThermalConductance();
        }
      }
      break;
    }
  case 'd' :
    {
      if (unitType == "deltatemperature") {
        if (returnIP) {
          result = createFahrenheitTemperature();
          result->cast<TemperatureUnit>().setAsRelative();
        }
        else {
          result = createCelsiusTemperature();
          result->cast<TemperatureUnit>().setAsRelative();
        }
      }
      break;
    }
  case 'l' :
    {
      if (unitType == "linearpowerdensity") {
        if (returnIP) {
          result = (createIPPower() / createIPLength());
        }
        else {
          result = (createSIPower() / createSILength());
        }
      }
      break;
    }
  case 'm' :
    {
      if (unitType == "massflowrate") {
        if (returnIP) {
          result = IPUnit(IPExpnt(1,0,-1));
        }
        else {
          result = SIUnit(SIExpnt(1,0,-1));
        }
      }
      break;
    }
  case 'p' :
    {
      if (unitType == "percent") {
        result = Unit();
        result->setBaseUnitExponent("%",1);
      }
      else if (unitType == "power") {
        result = createSIPower();
      }
      else if (unitType == "precipitationrate") {
        if (returnIP) {
          result = BTUUnit(BTUExpnt(0,1,-1));
        }
        else {
          result = WhUnit(WhExpnt(0,-1,1));
        }
      }
      else if (unitType == "pressure") {
        if (returnIP) {
          result = createIPPressure();
        }
        else {
          result = createSIPressure();
        }
      }
      break;
    }
  case 'r' :
    {
      if (unitType == "rotationsperminute") {
        result = createCFMFrequency();
      }
      break;
    }
  case 's' :
    {
      if (unitType == "solarenergy") {
        result = WhUnit(WhExpnt(1,1,-2));
      }
      break;
    }
  case 't' :
    {
      if (unitType == "temperature") {
        if (returnIP) {
          result = createFahrenheitTemperature();
        }
        else {
          result = createCelsiusTemperature();
        }
      }
      break;
    }
  case 'v' :
    {
      if (unitType == "velocity") {
        if (returnIP) {
          result = CFMUnit(CFMExpnt(1,-1));
        }
        else {
          result = SIUnit(SIExpnt(0,1,-1));
        }
      }
      if (unitType == "volumetricflowrate") {
        if (returnIP) {
          result = IPUnit(IPExpnt(0,3,-1));
        }
        else {
          result = SIUnit(SIExpnt(0,3,-1));
        }
      }
      break;
    }
  }

  return result;
}