示例#1
0
	void start(bool useTwoWires, 
			brain_pin_e pinEnable,
			brain_pin_e pinDir1,
			brain_pin_e pinDir2) {
		dcMotor.SetType(useTwoWires ? TwoPinDcMotor::ControlType::PwmDirectionPins : TwoPinDcMotor::ControlType::PwmEnablePin);

		m_pinEnable.initPin("ETB Enable", pinEnable);
		m_pinDir1.initPin("ETB Dir 1", pinDir1);
		m_pinDir2.initPin("ETB Dir 2", pinDir2);

		// Clamp to >100hz
		int freq = maxI(100, engineConfiguration->etbFreq);

		startSimplePwm(&m_pwmEnable, "ETB Enable",
				&engine->executor,
				&m_pinEnable,
				freq,
				0,
				(pwm_gen_callback*)applyPinState);

		startSimplePwm(&m_pwmDir1, "ETB Dir 1",
				&engine->executor,
				&m_pinDir1,
				freq,
				0,
				(pwm_gen_callback*)applyPinState);

		startSimplePwm(&m_pwmDir2, "ETB Dir 2",
				&engine->executor,
				&m_pinDir2,
				freq,
				0,
				(pwm_gen_callback*)applyPinState);
	}
示例#2
0
/**
 * this thread has a lower-then-usual stack size so we cannot afford *print* methods here
 */
static void blinkingThread(void *arg) {
	(void) arg;
	chRegSetThreadName("communication blinking");

	initialLedsBlink();

	while (true) {
		int delayMs = isConsoleReady() ? 3 * blinkingPeriod : blinkingPeriod;

#if EFI_INTERNAL_FLASH || defined(__DOXYGEN__)
		if (getNeedToWriteConfiguration()) {
			delayMs = 2 * delayMs;
		}
#endif

		communicationPin.setValue(0);
		warningPin.setValue(0);
		chThdSleepMilliseconds(delayMs);

		communicationPin.setValue(1);
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
		if (isTriggerErrorNow() || isIgnitionTimingError())
			warningPin.setValue(1);
#endif
		chThdSleepMilliseconds(delayMs);

	}
}
示例#3
0
 void onElectricThink()
 {
     InputPin *value = getInputPin("value");
     OutputPin *control = getOutputPin("control");
     Signal::Voltage fValue = value->outputSignal().getVoltage();
     bool controlOutput = control->outputSignal().isHigh();
     if(mBelowMax)
     {
         if(fValue < mHigher)
             controlOutput = true;
         else
         {
             mBelowMax = false;
             controlOutput = false;
         }
     }
     else
     {
         if(fValue > mLower)
             controlOutput = false;
         else
         {
             mBelowMax = true;
             controlOutput = true;
         }
     }
     if(control->outputSignal().isHigh() != controlOutput)
         control->inputSignal(Signal(controlOutput));
     Device::sleep();
 }
static void blink_digits(int digit, int duration) {
	for (int iter = 0; iter < digit; iter++) {
		checkEnginePin.setValue(0);
		chThdSleepMilliseconds(duration);
		checkEnginePin.setValue(1);
		chThdSleepMilliseconds(MFI_BLINK_SEPARATOR);
	}
}
示例#5
0
static void applyIdleSolenoidPinState(PwmConfig *state, int stateIndex) {
	efiAssertVoid(stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
	efiAssertVoid(state->multiWave.waveCount == 1, "invalid idle waveCount");
	OutputPin *output = state->outputPins[0];
	int value = state->multiWave.waves[0].pinStates[stateIndex];
	if (!value /* always allow turning solenoid off */ ||
			(engine->rpmCalculator.rpmValue != 0 || timeToStopIdleTest != 0) /* do not run solenoid unless engine is spinning or bench testing in progress */
			) {
		output->setValue(value);
	}
}
示例#6
0
void
OutputPin::write(uint8_t value, OutputPin& clk, Direction order)
{
    uint8_t bits = CHARBITS;
    if (order == MSB_FIRST) {
        synchronized do {
            _write(value & 0x80);
            clk._toggle();
            value <<= 1;
            clk._toggle();
        } while (--bits);
    }
示例#7
0
        void VideoRendererEVR::applyMixerSettings(qreal brightness, qreal contrast, qreal hue, qreal saturation)
        {
            InputPin sink = BackendNode::pins(m_filter, PINDIR_INPUT).first();
            OutputPin source;
            if (FAILED(sink->ConnectedTo(source.pparam()))) {
                return; //it must be connected to work
            }

            // Get the "Video Processor" (used for brightness/contrast/saturation/hue)
            ComPointer<IMFVideoProcessor> processor = getService<IMFVideoProcessor>(m_filter, MR_VIDEO_MIXER_SERVICE, IID_IMFVideoProcessor);
            Q_ASSERT(processor);

            DXVA2_ValueRange contrastRange;
            DXVA2_ValueRange brightnessRange;
            DXVA2_ValueRange saturationRange;
            DXVA2_ValueRange hueRange;

            if (FAILED(processor->GetProcAmpRange(DXVA2_ProcAmp_Contrast, &contrastRange)))
                return;
            if (FAILED(processor->GetProcAmpRange(DXVA2_ProcAmp_Brightness, &brightnessRange)))
                return;
            if (FAILED(processor->GetProcAmpRange(DXVA2_ProcAmp_Saturation, &saturationRange)))
                return;
            if (FAILED(processor->GetProcAmpRange(DXVA2_ProcAmp_Hue, &hueRange)))
                return;

            DXVA2_ProcAmpValues values;

            values.Contrast = DXVA2FloatToFixed(((contrast < 0
                                ? DXVA2FixedToFloat(contrastRange.MinValue) : DXVA2FixedToFloat(contrastRange.MaxValue))
                               - DXVA2FixedToFloat(contrastRange.DefaultValue)) * qAbs(contrast) + DXVA2FixedToFloat(contrastRange.DefaultValue));
            values.Brightness = DXVA2FloatToFixed(((brightness < 0
                                ? DXVA2FixedToFloat(brightnessRange.MinValue) : DXVA2FixedToFloat(brightnessRange.MaxValue))
                               - DXVA2FixedToFloat(brightnessRange.DefaultValue)) * qAbs(brightness) + DXVA2FixedToFloat(brightnessRange.DefaultValue));
            values.Saturation = DXVA2FloatToFixed(((saturation < 0
                                ? DXVA2FixedToFloat(saturationRange.MinValue) : DXVA2FixedToFloat(saturationRange.MaxValue))
                               - DXVA2FixedToFloat(saturationRange.DefaultValue)) * qAbs(saturation) + DXVA2FixedToFloat(saturationRange.DefaultValue));
            values.Hue = DXVA2FloatToFixed(((hue < 0
                                ? DXVA2FixedToFloat(hueRange.MinValue) : DXVA2FixedToFloat(hueRange.MaxValue))
                               - DXVA2FixedToFloat(hueRange.DefaultValue)) * qAbs(hue) + DXVA2FixedToFloat(hueRange.DefaultValue));

            //finally set the settings
            processor->SetProcAmpValues(DXVA2_ProcAmp_Contrast | DXVA2_ProcAmp_Brightness | DXVA2_ProcAmp_Saturation | DXVA2_ProcAmp_Hue, &values);

        }
示例#8
0
static msg_t hipThread(void *arg) {
	chRegSetThreadName("hip9011 init");

	// some time to let the hardware start
	hipCs.setValue(true);
	chThdSleepMilliseconds(100);
	hipCs.setValue(false);
	chThdSleepMilliseconds(100);
	hipCs.setValue(true);

	while (true) {
		chThdSleepMilliseconds(100);

		if (needToInit) {
			hipStartupCode();
			needToInit = false;
		}
	}
	return -1;
}
示例#9
0
void
OutputPin::write(uint8_t value, OutputPin& clk, Direction order) const
{
  uint8_t bits = CHARBITS;
  if (order == MSB_FIRST) {
    do {
      _write(value & 0x80);
      clk._toggle();
      value <<= 1;
      clk._toggle();
    } while (--bits);
  }
  else {
    do {
      _write(value & 0x01);
      clk._toggle();
      value >>= 1;
      clk._toggle();
    } while (--bits);
  }
}
示例#10
0
static msg_t seThread(void *arg) {
	(void)arg;
	chRegSetThreadName("servo");
	while (true) {

		OutputPin *pin = &pins[0];
		pin->setValue(1);


		percent_t position = (currentTimeMillis() / 5) % 200;
		if (position > 100)
			 position = 200 - position;

		float durationMs = 0 + position * 0.02f;

		scheduleForLater(&servoTurnSignalOff, (int)MS2US(durationMs), (schfunc_t) &servoTachPinLow, pin);


		chThdSleepMilliseconds(19);
	}
	return 0;
}
示例#11
0
    virtual void onThink()
    {
        SinkConnector *energyIn = getInput("energy-in");
        SourceConnector *energyOut = getOutput("energy-out");
        OutputPin *readout = getOutputPin("readout");
        mStored.attemptPumpSource(energyIn, Testing::Generator::ENERGY_PER_GENERATION);
        mStored.attemptPumpSink(energyOut, Testing::Generator::ENERGY_PER_GENERATION / 2);

        // 'waste' some output
        energyOut->pumpSource(Testing::Generator::ENERGY_PER_GENERATION / 4);

        Resource::Quantity stored = mStored.getQuantity() + energyOut->sourceQuantity();
        float percentFull = (float) stored / mStored.getCapacity();
        if(readout->outputSignal().getVoltage() != percentFull)
            readout->inputSignal(Signal(percentFull));

        cout << "[capacitor] percent full: " << (percentFull * 100.0) << endl;

        // go to sleep
        if(mStored.getQuantity() <= 0)
            Module::sleep();
    }
示例#12
0
static msg_t csThread(void) {
	chRegSetThreadName("status");
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
	while (true) {
		int rpm = getRpmE(engine);
		int is_cranking = isCrankingR(rpm);
		int is_running = rpm > 0 && !is_cranking;
		if (is_running) {
			// blinking while running
			runningPin.setValue(0);
			chThdSleepMilliseconds(50);
			runningPin.setValue(1);
			chThdSleepMilliseconds(50);
		} else {
			// constant on while cranking and off if engine is stopped
			runningPin.setValue(is_cranking);
			chThdSleepMilliseconds(100);
		}
	}
#endif /* EFI_SHAFT_POSITION_INPUT */
	return -1;
}
示例#13
0
文件: Pin.cpp 项目: Dzenik/Cosa
uint8_t 
Pin::read(OutputPin& clk, Direction order) const
{
  uint8_t value = 0;
  uint8_t bits = CHARBITS;
  if (order == MSB_FIRST) {
    do {
      value <<= 1;
      if (is_set()) value |= 0x01;
      clk.toggle();
      clk.toggle();
    } while (--bits);
  }
  else {
    do {
      value >>= 1;
      if (is_set()) value |= 0x80;
      clk.toggle();
      clk.toggle();
    } while (--bits);
  }
  return (value);
}
示例#14
0
/**
 * @brief Trigger decoding happens here
 * This method changes the state of trigger_state_s data structure according to the trigger event
 */
void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) {
	efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal");

	trigger_wheel_e triggerWheel = eventIndex[signal];

	if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) {
		orderingErrorCounter++;
	}

	prevSignal = curSignal;
	curSignal = signal;

	eventCount[triggerWheel]++;
	eventCountExt[signal]++;

	efitime_t currentDurationLong = getCurrentGapDuration(nowNt);

	/**
	 * For performance reasons, we want to work with 32 bit values. If there has been more then
	 * 10 seconds since previous trigger event we do not really care.
	 */
	currentDuration =
			currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong;

	if (isLessImportant(signal)) {
#if EFI_UNIT_TEST
		if (printTriggerDebug) {
			printf("%s isLessImportant %s\r\n",
					getTrigger_type_e(engineConfiguration->trigger.type),
					getTrigger_event_e(signal));
		}
#endif

		/**
		 * For less important events we simply increment the index.
		 */
		nextTriggerEvent()
		;
		if (TRIGGER_SHAPE(gapBothDirections)) {
			toothed_previous_duration = currentDuration;
			isFirstEvent = false;
			toothed_previous_time = nowNt;
		}
		return;
	}

	isFirstEvent = false;
// todo: skip a number of signal from the beginning

#if EFI_PROD_CODE
//	scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration);
//	scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration);
#else
	if (toothed_previous_duration != 0) {
//		printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration,
//				currentDuration, shaftPositionState->toothed_previous_duration);
	}
#endif

	bool_t isSynchronizationPoint;

	if (TRIGGER_SHAPE(isSynchronizationNeeded)) {
		isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom)
				&& currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo);

#if EFI_PROD_CODE
		if (engineConfiguration->isPrintTriggerSynchDetails) {
#else
		if (printTriggerDebug) {
#endif /* EFI_PROD_CODE */
			float gap = 1.0 * currentDuration / toothed_previous_duration;
#if EFI_PROD_CODE
			scheduleMsg(logger, "gap=%f @ %d", gap, current_index);
#else
			actualSynchGap = gap;
			print("current gap %f\r\n", gap);
#endif /* EFI_PROD_CODE */
		}

	} else {
		/**
		 * in case of noise the counter could be above the expected number of events
		 */
		int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1;
		isSynchronizationPoint = !shaft_is_synchronized || (current_index >= TRIGGER_SHAPE(size) - d);

	}

#if EFI_UNIT_TEST
		if (printTriggerDebug) {
			printf("%s isSynchronizationPoint=%d index=%d %s\r\n",
					getTrigger_type_e(engineConfiguration->trigger.type),
					isSynchronizationPoint, current_index,
					getTrigger_event_e(signal));
		}
#endif

	if (isSynchronizationPoint) {

		/**
		 * We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
		 */
		bool isDecodingError = eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0])
				|| eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1])
				|| eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]);

		triggerDecoderErrorPin.setValue(isDecodingError);
		if (isDecodingError) {
			lastDecodingErrorTime = getTimeNowNt();
			totalTriggerErrorCounter++;
			if (engineConfiguration->isPrintTriggerSynchDetails) {
#if EFI_PROD_CODE
				scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", current_index,
						TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
						TRIGGER_SHAPE(expectedEventCount[2]), eventCount[0], eventCount[1], eventCount[2]);
#endif /* EFI_PROD_CODE */
			}
		}

		errorDetection.add(isDecodingError);

		if (isTriggerDecoderError()) {
			warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d",
					TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
					TRIGGER_SHAPE(expectedEventCount[2]), eventCount[0], eventCount[1], eventCount[2]);
		}

		shaft_is_synchronized = true;
		// this call would update duty cycle values
		nextTriggerEvent()
		;

		nextRevolution();
	} else {
		nextTriggerEvent()
		;
	}

	toothed_previous_duration = currentDuration;
	toothed_previous_time = nowNt;
}

float getEngineCycle(operation_mode_e operationMode) {
	return operationMode == TWO_STROKE ? 360 : 720;
}

void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s,
		int totalTeethCount, int skippedCount,
		float toothWidth,
		float offset, float engineCycle, float filterLeft, float filterRight) {
	efiAssertVoid(totalTeethCount > 0, "total count");
	efiAssertVoid(skippedCount >= 0, "skipped count");

	for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) {
		float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth));
		float angleUp = engineCycle / totalTeethCount * (i + 1);
		s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight);
		s->addEvent(offset + angleUp, wheel, TV_LOW, filterLeft, filterRight);
	}

	float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth) );
	s->addEvent(offset + angleDown, wheel, TV_HIGH, filterLeft, filterRight);
	s->addEvent(offset + engineCycle, wheel, TV_LOW, filterLeft, filterRight);
}
示例#15
0
/**
 * @brief Trigger decoding happens here
 * This method is invoked every time we have a fall or rise on one of the trigger sensors.
 * This method changes the state of trigger_state_s data structure according to the trigger event
 * @param signal type of event which just happened
 * @param nowNt current time
 */
void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) {
	efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal");

	trigger_wheel_e triggerWheel = eventIndex[signal];

	if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) {
		orderingErrorCounter++;
	}

	prevSignal = curSignal;
	curSignal = signal;

	currentCycle.eventCount[triggerWheel]++;

	efitime_t currentDurationLong = getCurrentGapDuration(nowNt);

	/**
	 * For performance reasons, we want to work with 32 bit values. If there has been more then
	 * 10 seconds since previous trigger event we do not really care.
	 */
	currentDuration =
			currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong;

	bool isPrimary = triggerWheel == T_PRIMARY;

	if (isLessImportant(signal)) {
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
		if (printTriggerDebug) {
			printf("%s isLessImportant %s %d\r\n",
					getTrigger_type_e(engineConfiguration->trigger.type),
					getTrigger_event_e(signal),
					nowNt);
		}
#endif

		/**
		 * For less important events we simply increment the index.
		 */
		nextTriggerEvent()
		;
		if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) {
			isFirstEvent = false;
			thirdPreviousDuration = durationBeforePrevious;
			durationBeforePrevious = toothed_previous_duration;
			toothed_previous_duration = currentDuration;
			toothed_previous_time = nowNt;
		}
	} else {

#if EFI_UNIT_TEST || defined(__DOXYGEN__)
		if (printTriggerDebug) {
			printf("%s event %s %d\r\n",
					getTrigger_type_e(engineConfiguration->trigger.type),
					getTrigger_event_e(signal),
					nowNt);
		}
#endif

		isFirstEvent = false;
// todo: skip a number of signal from the beginning

#if EFI_PROD_CODE || defined(__DOXYGEN__)
//	scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration);
//	scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration);
#else
		if (toothed_previous_duration != 0) {
//		printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration,
//				currentDuration, shaftPositionState->toothed_previous_duration);
		}
#endif

		bool isSynchronizationPoint;

		if (TRIGGER_SHAPE(isSynchronizationNeeded)) {
			/**
			 * Here I prefer to have two multiplications instead of one division, that's a micro-optimization
			 */
			isSynchronizationPoint =
					   currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom)
					&& currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo)
					&& toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom)
					&& toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo)
// this is getting a little out of hand, any ideas?
					&& durationBeforePrevious > thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioFrom)
					&& durationBeforePrevious < thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioTo)
;

#if EFI_PROD_CODE || defined(__DOXYGEN__)
			if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) {
#else
				if (printTriggerDebug) {
#endif /* EFI_PROD_CODE */
				float gap = 1.0 * currentDuration / toothed_previous_duration;
				float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious;
				float gap3 = 1.0 * durationBeforePrevious / thirdPreviousDuration;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
				scheduleMsg(logger, "gap=%f/%f/%f @ %d while expected %f/%f and %f/%f error=%d",
						gap, prevGap, gap3,
						currentCycle.current_index,
						TRIGGER_SHAPE(syncRatioFrom), TRIGGER_SHAPE(syncRatioTo),
						TRIGGER_SHAPE(secondSyncRatioFrom), TRIGGER_SHAPE(secondSyncRatioTo), someSortOfTriggerError);
#else
				actualSynchGap = gap;
				print("current gap %f/%f/%f c=%d prev=%d\r\n", gap, prevGap, gap3, currentDuration, toothed_previous_duration);
#endif /* EFI_PROD_CODE */
			}

		} else {
			/**
			 * in case of noise the counter could be above the expected number of events
			 */
			int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1;
			isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= TRIGGER_SHAPE(size) - d);

		}

#if EFI_UNIT_TEST || defined(__DOXYGEN__)
		if (printTriggerDebug) {
			printf("%s isSynchronizationPoint=%d index=%d %s\r\n",
					getTrigger_type_e(engineConfiguration->trigger.type),
					isSynchronizationPoint, currentCycle.current_index,
					getTrigger_event_e(signal));
		}
#endif

		if (isSynchronizationPoint) {

			/**
			 * We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
			 */
			bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0])
					|| currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1])
					|| currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]);

			triggerDecoderErrorPin.setValue(isDecodingError);
			if (isDecodingError) {
				lastDecodingErrorTime = getTimeNowNt();
				someSortOfTriggerError = true;

				totalTriggerErrorCounter++;
				if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
					scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d",
							currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]),
							TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]),
							currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]);
#endif /* EFI_PROD_CODE */
				}
			}

			errorDetection.add(isDecodingError);

			if (isTriggerDecoderError()) {
				warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d",
						TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
						TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1],
						currentCycle.eventCount[2]);
			}

			shaft_is_synchronized = true;
			// this call would update duty cycle values
			nextTriggerEvent()
			;

			nextRevolution();
		} else {
			nextTriggerEvent()
			;
		}

		thirdPreviousDuration = durationBeforePrevious;
		durationBeforePrevious = toothed_previous_duration;
		toothed_previous_duration = currentDuration;
		toothed_previous_time = nowNt;
	}
	if (!isValidIndex(PASS_ENGINE_PARAMETER_F)) {
		warning(OBD_PCM_Processor_Fault, "unexpected eventIndex=%d while size %d", currentCycle.current_index, TRIGGER_SHAPE(size));
		lastDecodingErrorTime = getTimeNowNt();
		someSortOfTriggerError = true;
	}
	if (someSortOfTriggerError) {
		if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) {
			someSortOfTriggerError = false;
		}
	}

	if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) {
		angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]);
		// todo: make this '90' depend on cylinder count?
		angle_t prevAngle = currentAngle - 90;
		fixAngle(prevAngle);
		// todo: prevIndex should be pre-calculated
		int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]);
		// now let's get precise angle for that event
		prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]);
// todo: re-implement this as a subclass. we need two instances of
//		uint32_t time = nowNt - timeOfLastEvent[prevIndex];
		angle_t angleDiff = currentAngle - prevAngle;
		// todo: angle diff should be pre-calculated
		fixAngle(angleDiff);

//		float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;

#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
		if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) {
//			scAddData(currentAngle, r);
		} else {
//			scAddData(currentAngle, r / instantRpmValue[prevIndex]);
		}
#endif
//		instantRpmValue[currentCycle.current_index] = r;
//		timeOfLastEvent[currentCycle.current_index] = nowNt;
	}
}

angle_t getEngineCycle(operation_mode_e operationMode) {
	return operationMode == TWO_STROKE ? 360 : 720;
}

void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s, int totalTeethCount, int skippedCount,
		float toothWidth, float offset, float engineCycle, float filterLeft, float filterRight) {
	efiAssertVoid(totalTeethCount > 0, "total count");
	efiAssertVoid(skippedCount >= 0, "skipped count");

	for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) {
		float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth));
		float angleUp = engineCycle / totalTeethCount * (i + 1);
		s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight);
		s->addEvent(offset + angleUp, wheel, TV_FALL, filterLeft, filterRight);
	}

	float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth));
	s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight);
	s->addEvent(offset + engineCycle, wheel, TV_FALL, filterLeft, filterRight);
}