示例#1
0
void AdaptivePath::update() {
  double weight2 = -1.*mypathv->dx;
  double weight1 = 1.0 + mypathv->dx;
  if( weight1>1.0 ) {
    weight1=1.0; weight2=0.0;
  } else if( weight2>1.0 ) {
    weight1=0.0; weight2=1.0;
  }
  // Add projections to dispalcement accumulators
  ReferenceConfiguration* myref = getReferenceConfiguration( mypathv->iclose1 );
  myref->extractDisplacementVector( getPositions(), getArguments(), mypathv->cargs, false, displacement );
  getReferenceConfiguration( mypathv->iclose2 )->extractDisplacementVector( myref->getReferencePositions(), getArguments(), myref->getReferenceArguments(), false, displacement2 );
  displacement.addDirection( -mypathv->dx, displacement2 );
  pdisplacements[mypathv->iclose1].addDirection( weight1, displacement );
  pdisplacements[mypathv->iclose2].addDirection( weight2, displacement );
  // Update weight accumulators
  wsum[mypathv->iclose1] *= fadefact;
  wsum[mypathv->iclose2] *= fadefact;
  wsum[mypathv->iclose1] += weight1;
  wsum[mypathv->iclose2] += weight2;

  // This does the update of the path if it is time to
  if( (getStep()>0) && (getStep()%update_str==0) ) {
    wsum[fixedn[0]]=wsum[fixedn[1]]=0.;
    for(unsigned inode=0; inode<getNumberOfReferencePoints(); ++inode) {
      if( wsum[inode]>0 ) {
        // First displace the node by the weighted direction
        getReferenceConfiguration( inode )->displaceReferenceConfiguration( 1./wsum[inode], pdisplacements[inode] );
        // Reset the displacement
        pdisplacements[inode].zeroDirection();
      }
    }
    // Now ensure all the nodes of the path are equally spaced
    PathReparameterization myspacings( getPbc(), getArguments(), getAllReferenceConfigurations() );
    myspacings.reparameterize( fixedn[0], fixedn[1], tolerance );
  }
  if( (getStep()>0) && (getStep()%wstride==0) ) {
    pathfile.printf("# PATH AT STEP %d TIME %f \n", getStep(), getTime() );
    std::vector<std::unique_ptr<ReferenceConfiguration>>& myconfs=getAllReferenceConfigurations();
    std::vector<SetupMolInfo*> moldat=plumed.getActionSet().select<SetupMolInfo*>();
    if( moldat.size()>1 ) error("you should only have one MOLINFO action in your input file");
    SetupMolInfo* mymoldat=NULL; if( moldat.size()==1 ) mymoldat=moldat[0];
    std::vector<std::string> argument_names( getNumberOfArguments() );
    for(unsigned i=0; i<getNumberOfArguments(); ++i) argument_names[i] = getPntrToArgument(i)->getName();
    PDB mypdb; mypdb.setArgumentNames( argument_names );
    for(unsigned i=0; i<myconfs.size(); ++i) {
      pathfile.printf("REMARK TYPE=%s\n", myconfs[i]->getName().c_str() );
      mypdb.setAtomPositions( myconfs[i]->getReferencePositions() );
      for(unsigned j=0; j<getNumberOfArguments(); ++j) mypdb.setArgumentValue( getPntrToArgument(j)->getName(), myconfs[i]->getReferenceArgument(j) );
      mypdb.print( atoms.getUnits().getLength()/0.1, mymoldat, pathfile, ofmt );
    }
    pathfile.flush();
  }
}
bool DataCollectionObject::transferDataToPDB( PDB& mypdb ) {
  // Check if PDB contains argument names
  std::vector<std::string> pdb_args( mypdb.getArgumentNames() );
  // Now set the argument values
  std::map<std::string,double>::iterator it;
  for(unsigned i=0; i<pdb_args.size(); ++i) {
    it=args.find( pdb_args[i] );
    if( it==args.end() ) return false;
    mypdb.setArgumentValue( pdb_args[i], it->second );
  }
  // Now set the atomic positions
  std::vector<AtomNumber> pdb_pos( mypdb.getAtomNumbers() );
  if( pdb_pos.size()==positions.size() ) mypdb.setAtomPositions( positions );
  else if( pdb_pos.size()>0 ) plumed_merror("This feature is currently not ready");
  return true;
}