PClassifier TSimpleTreeLearner::operator()(PExampleGenerator ogen, const int &weight) { struct Example *examples, *ex; struct SimpleTreeNode *tree; struct Args args; int cls_vals; if (!ogen->domain->classVar) raiseError("class-less domain"); if (!ogen->numberOfExamples() > 0) raiseError("no examples"); /* create a tabel with pointers to examples */ ASSERT(examples = (struct Example *)calloc(ogen->numberOfExamples(), sizeof *examples)); ex = examples; PEITERATE(ei, ogen) { ex->example = &(*ei); ex->weight = 1.0; ex++; }
bool TTreeStopCriteria::operator()(PExampleGenerator gen, const int &, PDomainContingency ocont) { int nor = gen->numberOfExamples(); if ((nor==0) || (nor==1)) return true; // example set is too small char vt = gen->domain->classVar->varType; if (vt!=TValue::INTVAR) return false; // class is continuous, may continue // is there more than one class left? if (ocont) { char ndcf = 0; TDiscDistribution const &dva=CAST_TO_DISCDISTRIBUTION(ocont->classes); const_ITERATE(TDiscDistribution, ci, dva) if ((*ci>0) && (++ndcf==2)) return false; // at least two classes, may continue } else {
PTreeNode TTreeLearner::operator()(PExampleGenerator examples, const int &weightID, PDistribution apriorClass, vector<bool> &candidates, const int &depth) { PDomainContingency contingency; PDomainDistributions domainDistributions; PDistribution classDistribution; if (!examples->numberOfExamples()) return PTreeNode(); if (contingencyComputer) contingency = contingencyComputer->call(examples, weightID); if (storeContingencies) contingency = mlnew TDomainContingency(examples, weightID); if (contingency) classDistribution = contingency->classes; else if (storeDistributions) classDistribution = getClassDistribution(examples, weightID); if (classDistribution) { if (!classDistribution->abs) return PTreeNode(); } else if (examples->weightOfExamples() < 1e-10) return PTreeNode(); TTreeNode *utreeNode = mlnew TTreeNode(); PTreeNode treeNode = utreeNode; utreeNode->weightID = weightID; bool isLeaf = ((maxDepth>=0) && (depth == maxDepth)) || stop->call(examples, weightID, contingency); if (isLeaf || storeNodeClassifier) { utreeNode->nodeClassifier = nodeLearner ? nodeLearner->smartLearn(examples, weightID, contingency, domainDistributions, classDistribution) : TMajorityLearner().smartLearn(examples, weightID, contingency, domainDistributions, classDistribution); if (isLeaf) { if (storeContingencies) utreeNode->contingency = contingency; if (storeDistributions) utreeNode->distribution = classDistribution; return treeNode; } } utreeNode->contingency = contingency; utreeNode->distribution = classDistribution; float quality; int spentAttribute; utreeNode->branchSelector = split->call(utreeNode->branchDescriptions, utreeNode->branchSizes, quality, spentAttribute, examples, weightID, contingency, apriorClass ? apriorClass : classDistribution, candidates, utreeNode->nodeClassifier); isLeaf = !utreeNode->branchSelector; bool hasNullNodes = false; if (!isLeaf) { if (spentAttribute>=0) if (candidates[spentAttribute]) candidates[spentAttribute] = false; else spentAttribute = -1; /* BEWARE: If you add an additional 'return' in the code below, do not forget to restore the candidate's flag. */ utreeNode->branches = mlnew TTreeNodeList(); vector<int> newWeights; PExampleGeneratorList subsets = exampleSplitter->call(treeNode, examples, weightID, newWeights); if (!utreeNode->branchSizes) utreeNode->branchSizes = branchSizesFromSubsets(subsets, weightID, newWeights); if (!storeContingencies) utreeNode->contingency = PDomainContingency(); if (!storeDistributions) utreeNode->distribution = PDistribution(); vector<int>::iterator nwi = newWeights.begin(), nwe = newWeights.end(); PITERATE(TExampleGeneratorList, gi, subsets) { if ((*gi)->numberOfExamples()) { utreeNode->branches->push_back(call(*gi, (nwi!=nwe) ? *nwi : weightID, apriorClass, candidates, depth+1)); // Can store pointers to examples: the original is stored in the root if (storeExamples && utreeNode->branches->back()) utreeNode->branches->back()->examples = *gi; else if ((nwi!=nwe) && *nwi && (*nwi != weightID)) examples->removeMetaAttribute(*nwi); } else { utreeNode->branches->push_back(PTreeNode()); hasNullNodes = true; } if (nwi!=nwe) nwi++; } /* If I set it to false, it must had been true before (otherwise, my TreeSplitConstructor wouldn't be allowed to spend it). Hence, I can simply set it back to true... */ if (spentAttribute>=0) candidates[spentAttribute] = true; } else { // no split constructed if (!utreeNode->contingency)
PClassifier TTreeSplitConstructor_Combined::operator()( PStringList &descriptions, PDiscDistribution &subsetSizes, float &quality, int &spentAttribute, PExampleGenerator gen, const int &weightID , PDomainContingency dcont, PDistribution apriorClass, const vector<bool> &candidates, PClassifier nodeClassifier ) { checkProperty(discreteSplitConstructor); checkProperty(continuousSplitConstructor); vector<bool> discrete, continuous; bool cse = candidates.size()==0; vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end()); TVarList::const_iterator vi(gen->domain->attributes->begin()), ve(gen->domain->attributes->end()); for(; (cse || (ci!=ce)) && (vi!=ve); vi++) { if (cse || *(ci++)) if ((*vi)->varType == TValue::INTVAR) { discrete.push_back(true); continuous.push_back(false); continue; } else if ((*vi)->varType == TValue::FLOATVAR) { discrete.push_back(false); continuous.push_back(true); continue; } discrete.push_back(false); continuous.push_back(false); } float discQuality; PStringList discDescriptions; PDiscDistribution discSizes; int discSpent; PClassifier discSplit = discreteSplitConstructor->call(discDescriptions, discSizes, discQuality, discSpent, gen, weightID, dcont, apriorClass, discrete, nodeClassifier); float contQuality; PStringList contDescriptions; PDiscDistribution contSizes; int contSpent; PClassifier contSplit = continuousSplitConstructor->call(contDescriptions, contSizes, contQuality, contSpent, gen, weightID, dcont, apriorClass, continuous, nodeClassifier); int N = gen ? gen->numberOfExamples() : -1; if (N<0) N = dcont->classes->cases; if ( discSplit && ( !contSplit || (discQuality>contQuality) || (discQuality==contQuality) && (N%2>0))) { quality = discQuality; descriptions = discDescriptions; subsetSizes = discSizes; spentAttribute = discSpent; return discSplit; } else if (contSplit) { quality = contQuality; descriptions = contDescriptions; subsetSizes = contSizes; spentAttribute = contSpent; return contSplit; } else return returnNothing(descriptions, subsetSizes, quality, spentAttribute); }
PClassifier TTreeSplitConstructor_ExhaustiveBinary::operator()( PStringList &descriptions, PDiscDistribution &subsetSizes, float &quality, int &spentAttribute, PExampleGenerator gen, const int &weightID , PDomainContingency dcont, PDistribution apriorClass, const vector<bool> &candidates, PClassifier ) { checkProperty(measure); measure->checkClassTypeExc(gen->domain->classVar->varType); PIntList bestMapping; int wins, bestAttr; PVariable bvar; if (measure->needs==TMeasureAttribute::Generator) { bool cse = candidates.size()==0; bool haveCandidates = false; vector<bool> myCandidates; myCandidates.reserve(gen->domain->attributes->size()); vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end()); TVarList::const_iterator vi, ve(gen->domain->attributes->end()); for(vi = gen->domain->attributes->begin(); vi != ve; vi++) { bool co = (*vi)->varType == TValue::INTVAR && (!cse || (ci!=ce) && *ci); myCandidates.push_back(co); haveCandidates = haveCandidates || co; } if (!haveCandidates) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); PDistribution thisSubsets; float thisQuality; wins = 0; int thisAttr = 0; int N = gen->numberOfExamples(); TSimpleRandomGenerator rgen(N); ci = myCandidates.begin(); for(vi = gen->domain->attributes->begin(); vi != ve; ci++, vi++, thisAttr++) { if (*ci) { thisSubsets = NULL; PIntList thisMapping = /*throughCont ? measure->bestBinarization(thisSubsets, thisQuality, *dci, dcont->classes, apriorClass, minSubset) : */measure->bestBinarization(thisSubsets, thisQuality, *vi, gen, apriorClass, weightID, minSubset); if (thisMapping && ( (!wins || (thisQuality>quality)) && ((wins=1)==1) || (thisQuality==quality) && rgen.randbool(++wins))) { bestAttr = thisAttr; quality = thisQuality; subsetSizes = thisSubsets; bestMapping = thisMapping; } } /*if (thoughCont) dci++; */ } if (!wins) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); if (quality<worstAcceptable) return returnNothing(descriptions, subsetSizes, spentAttribute); if (subsetSizes && subsetSizes->variable) bvar = subsetSizes->variable; else { TEnumVariable *evar = mlnew TEnumVariable(""); evar->addValue("0"); evar->addValue("1"); bvar = evar; } } else { bool cse = candidates.size()==0; if (!cse && noCandidates(candidates)) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); if (!dcont || dcont->classIsOuter) { dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID)); // raiseWarningWho("TreeSplitConstructor_ExhaustiveBinary", "this class is not optimized for 'candidates' list and can be very slow"); } int N = gen ? gen->numberOfExamples() : -1; if (N<0) N = dcont->classes->cases; TSimpleRandomGenerator rgen(N); PDistribution classDistribution = dcont->classes; vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end()); TDiscDistribution *dis0, *dis1; TContDistribution *con0, *con1; int thisAttr = 0; bestAttr = -1; wins = 0; quality = 0.0; float leftExamples, rightExamples; TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end()); for(; (cse || (ci!=ce)) && (dci!=dce); dci++, thisAttr++) { // We consider the attribute only if it is a candidate, discrete and has at least two values if ((cse || *(ci++)) && ((*dci)->outerVariable->varType==TValue::INTVAR) && ((*dci)->discrete->size()>=2)) { const TDistributionVector &distr = *(*dci)->discrete; if (distr.size()>16) raiseError("'%s' has more than 16 values, cannot exhaustively binarize", gen->domain->attributes->at(thisAttr)->get_name().c_str()); // If the attribute is binary, we check subsetSizes and assess the quality if they are OK if (distr.size()==2) { if ((distr.front()->abs<minSubset) || (distr.back()->abs<minSubset)) continue; // next attribute else { float thisMeas = measure->call(thisAttr, dcont, apriorClass); if ( ((!wins || (thisMeas>quality)) && ((wins=1)==1)) || ((thisMeas==quality) && rgen.randbool(++wins))) { bestAttr = thisAttr; quality = thisMeas; leftExamples = distr.front()->abs; rightExamples = distr.back()->abs; bestMapping = mlnew TIntList(2, 0); bestMapping->at(1) = 1; } continue; } } vector<int> valueIndices; int ind = 0; for(TDistributionVector::const_iterator dvi(distr.begin()), dve(distr.end()); (dvi!=dve); dvi++, ind++) if ((*dvi)->abs>0) valueIndices.push_back(ind); if (valueIndices.size()<2) continue; PContingency cont = prepareBinaryCheat(classDistribution, *dci, bvar, dis0, dis1, con0, con1); // A real job: go through all splits int binWins = 0; float binQuality = -1.0; float binLeftExamples = -1.0, binRightExamples = -1.0; // Selection: each element correspons to a value of the original attribute and is 1, if the value goes right // The first value always goes left (and has no corresponding bit in selection. TBoolCount selection(valueIndices.size()-1), bestSelection(0); // First for discrete classes if (dis0) { do { *dis0 = CAST_TO_DISCDISTRIBUTION(distr[valueIndices[0]]); *dis1 *= 0; vector<int>::const_iterator ii(valueIndices.begin()); ii++; for(TBoolCount::const_iterator bi(selection.begin()), be(selection.end()); bi!=be; bi++, ii++) *(*bi ? dis1 : dis0) += distr[*ii]; cont->outerDistribution->setint(0, dis0->abs); cont->outerDistribution->setint(1, dis1->abs); if ((dis0->abs < minSubset) || (dis1->abs < minSubset)) continue; // cannot split like that, to few examples in one of the branches float thisMeas = measure->operator()(cont, classDistribution, apriorClass); if ( ((!binWins) || (thisMeas>binQuality)) && ((binWins=1) ==1) || (thisMeas==binQuality) && rgen.randbool(++binWins)) { bestSelection = selection; binQuality = thisMeas; binLeftExamples = dis0->abs; binRightExamples = dis1->abs; } } while (selection.next()); } // And then exactly the same for continuous classes else { do { *con0 = CAST_TO_CONTDISTRIBUTION(distr[0]); *con1 = TContDistribution(); vector<int>::const_iterator ii(valueIndices.begin()); for(TBoolCount::const_iterator bi(selection.begin()), be(selection.end()); bi!=be; bi++, ii++) *(*bi ? con1 : con0) += distr[*ii]; if ((con0->abs<minSubset) || (con1->abs<minSubset)) continue; // cannot split like that, to few examples in one of the branches float thisMeas = measure->operator()(cont, classDistribution, apriorClass); if ( ((!binWins) || (thisMeas>binQuality)) && ((binWins=1) ==1) || (thisMeas==binQuality) && rgen.randbool(++binWins)) { bestSelection = selection; binQuality = thisMeas; binLeftExamples = con0->abs; binRightExamples = con1->abs; } } while (selection.next()); } if ( binWins && ( (!wins || (binQuality>quality)) && ((wins=1)==1) || (binQuality==quality) && rgen.randbool(++wins))) { bestAttr = thisAttr; quality = binQuality; leftExamples = binLeftExamples; rightExamples = binRightExamples; bestMapping = mlnew TIntList(distr.size(), -1); vector<int>::const_iterator ii = valueIndices.begin(); bestMapping->at(*(ii++)) = 0; ITERATE(TBoolCount, bi, bestSelection) bestMapping->at(*(ii++)) = *bi ? 1 : 0; } } } if (!wins) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); subsetSizes = mlnew TDiscDistribution(); subsetSizes->addint(0, leftExamples); subsetSizes->addint(1, rightExamples); } PVariable attribute = gen->domain->attributes->at(bestAttr); if (attribute->noOfValues() == 2) { spentAttribute = bestAttr; descriptions = mlnew TStringList(attribute.AS(TEnumVariable)->values.getReference()); TClassifierFromVarFD *cfv = mlnew TClassifierFromVarFD(attribute, gen->domain, bestAttr, subsetSizes); cfv->transformUnknowns = false; return cfv; } string s0, s1; int ns0 = 0, ns1 = 0; TValue ev; attribute->firstValue(ev); PITERATE(TIntList, mi, bestMapping) { string str; attribute->val2str(ev, str); if (*mi==1) { s1 += string(ns1 ? ", " : "") + str; ns1++; } else if (*mi==0) { s0 += string(ns0 ? ", " : "") + str; ns0++; } attribute->nextValue(ev); }
PClassifier TTreeSplitConstructor_Attribute::operator()( PStringList &descriptions, PDiscDistribution &subsetSizes, float &quality, int &spentAttribute, PExampleGenerator gen, const int &weightID, PDomainContingency dcont, PDistribution apriorClass, const vector<bool> &candidates, PClassifier nodeClassifier ) { checkProperty(measure); measure->checkClassTypeExc(gen->domain->classVar->varType); bool cse = candidates.size()==0; vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end()); if (!cse) { if (noCandidates(candidates)) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); ci = candidates.begin(); } int N = gen ? gen->numberOfExamples() : -1; if (N<0) N = dcont->classes->cases; TSimpleRandomGenerator rgen(N); int thisAttr = 0, bestAttr = -1, wins = 0; quality = 0.0; if (measure->needs == TMeasureAttribute::Contingency_Class) { vector<bool> myCandidates; if (cse) { myCandidates.reserve(gen->domain->attributes->size()); PITERATE(TVarList, vi, gen->domain->attributes) myCandidates.push_back((*vi)->varType == TValue::INTVAR); } else { myCandidates.reserve(candidates.size()); TVarList::const_iterator vi(gen->domain->attributes->begin()); for(; ci != ce; ci++, vi++) myCandidates.push_back(*ci && ((*vi)->varType == TValue::INTVAR)); } if (!dcont || dcont->classIsOuter) dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID, myCandidates)); ci = myCandidates.begin(); ce = myCandidates.end(); TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end()); for(; (ci != ce) && (dci!=dce); dci++, ci++, thisAttr++) if (*ci && checkDistribution((const TDiscDistribution &)((*dci)->outerDistribution.getReference()), minSubset)) { float thisMeas = measure->call(thisAttr, dcont, apriorClass); if ( ((!wins || (thisMeas>quality)) && ((wins=1)==1)) || ((thisMeas==quality) && rgen.randbool(++wins))) { quality = thisMeas; subsetSizes = (*dci)->outerDistribution; bestAttr = thisAttr; } } } else if (measure->needs == TMeasureAttribute::DomainContingency) { if (!dcont || dcont->classIsOuter) dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID)); TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end()); for(; (cse || (ci!=ce)) && (dci!=dce); dci++, thisAttr++) if ( (cse || *(ci++)) && ((*dci)->outerVariable->varType==TValue::INTVAR) && checkDistribution((const TDiscDistribution &)((*dci)->outerDistribution.getReference()), minSubset)) { float thisMeas = measure->call(thisAttr, dcont, apriorClass); if ( ((!wins || (thisMeas>quality)) && ((wins=1)==1)) || ((thisMeas==quality) && rgen.randbool(++wins))) { quality = thisMeas; subsetSizes = (*dci)->outerDistribution; bestAttr = thisAttr; } } } else { TDomainDistributions ddist(gen, weightID); TDomainDistributions::iterator ddi(ddist.begin()), dde(ddist.end()-1); for(; (cse || (ci!=ce)) && (ddi!=dde); ddi++, thisAttr++) if (cse || *(ci++)) { TDiscDistribution *discdist = (*ddi).AS(TDiscDistribution); if (discdist && checkDistribution(*discdist, minSubset)) { float thisMeas = measure->call(thisAttr, gen, apriorClass, weightID); if ( ((!wins || (thisMeas>quality)) && ((wins=1)==1)) || ((thisMeas==quality) && rgen.randbool(++wins))) { quality = thisMeas; subsetSizes = PDiscDistribution(*ddi); // not discdist - this would be double wrapping! bestAttr = thisAttr; } } } } if (!wins) return returnNothing(descriptions, subsetSizes, quality, spentAttribute); if (quality<worstAcceptable) return returnNothing(descriptions, subsetSizes, spentAttribute); PVariable attribute = gen->domain->attributes->at(bestAttr); TEnumVariable *evar = attribute.AS(TEnumVariable); if (evar) descriptions = mlnew TStringList(evar->values.getReference()); else descriptions = mlnew TStringList(subsetSizes->size(), ""); spentAttribute = bestAttr; TClassifierFromVarFD *cfv = mlnew TClassifierFromVarFD(attribute, gen->domain, bestAttr, subsetSizes); cfv->transformUnknowns = false; return cfv; }