/// EvaluateDefined - Process a 'defined(sym)' expression. static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT, bool ValueLive, Preprocessor &PP) { IdentifierInfo *II; Result.setBegin(PeekTok.getLocation()); // Get the next token, don't expand it. PP.LexUnexpandedToken(PeekTok); // Two options, it can either be a pp-identifier or a (. SourceLocation LParenLoc; if (PeekTok.is(tok::l_paren)) { // Found a paren, remember we saw it and skip it. LParenLoc = PeekTok.getLocation(); PP.LexUnexpandedToken(PeekTok); } // If we don't have a pp-identifier now, this is an error. if ((II = PeekTok.getIdentifierInfo()) == 0) { PP.Diag(PeekTok, diag::err_pp_defined_requires_identifier); return true; } // Otherwise, we got an identifier, is it defined to something? Result.Val = II->hasMacroDefinition(); Result.Val.setIsUnsigned(false); // Result is signed intmax_t. // If there is a macro, mark it used. if (Result.Val != 0 && ValueLive) { MacroInfo *Macro = PP.getMacroInfo(II); Macro->setIsUsed(true); } // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); // If we are in parens, ensure we have a trailing ). if (LParenLoc.isValid()) { if (PeekTok.isNot(tok::r_paren)) { PP.Diag(PeekTok.getLocation(), diag::err_pp_missing_rparen) << "defined"; PP.Diag(LParenLoc, diag::note_matching) << "("; return true; } // Consume the ). Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } // Success, remember that we saw defined(X). DT.State = DefinedTracker::DefinedMacro; DT.TheMacro = II; return false; }
/// EvaluateDefined - Process a 'defined(sym)' expression. static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT, bool ValueLive, Preprocessor &PP) { IdentifierInfo *II; Result.setBegin(PeekTok.getLocation()); // Get the next token, don't expand it. PP.LexUnexpandedNonComment(PeekTok); // Two options, it can either be a pp-identifier or a (. SourceLocation LParenLoc; if (PeekTok.is(tok::l_paren)) { // Found a paren, remember we saw it and skip it. LParenLoc = PeekTok.getLocation(); PP.LexUnexpandedNonComment(PeekTok); } if (PeekTok.is(tok::code_completion)) { if (PP.getCodeCompletionHandler()) PP.getCodeCompletionHandler()->CodeCompleteMacroName(false); PP.setCodeCompletionReached(); PP.LexUnexpandedNonComment(PeekTok); } // If we don't have a pp-identifier now, this is an error. if ((II = PeekTok.getIdentifierInfo()) == 0) { PP.Diag(PeekTok, diag::err_pp_defined_requires_identifier); return true; } // Otherwise, we got an identifier, is it defined to something? Result.Val = II->hasMacroDefinition(); Result.Val.setIsUnsigned(false); // Result is signed intmax_t. MacroInfo *Macro = 0; // If there is a macro, mark it used. if (Result.Val != 0 && ValueLive) { Macro = PP.getMacroInfo(II); PP.markMacroAsUsed(Macro); } // Invoke the 'defined' callback. if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { MacroInfo *MI = Macro; // Pass the MacroInfo for the macro name even if the value is dead. if (!MI && Result.Val != 0) MI = PP.getMacroInfo(II); Callbacks->Defined(PeekTok, MI); } // If we are in parens, ensure we have a trailing ). if (LParenLoc.isValid()) { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexUnexpandedNonComment(PeekTok); if (PeekTok.isNot(tok::r_paren)) { PP.Diag(PeekTok.getLocation(), diag::err_pp_missing_rparen) << "defined"; PP.Diag(LParenLoc, diag::note_matching) << "("; return true; } // Consume the ). Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } else { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } // Success, remember that we saw defined(X). DT.State = DefinedTracker::DefinedMacro; DT.TheMacro = II; return false; }
/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is /// PeekTok, and whose precedence is PeekPrec. This returns the result in LHS. /// /// If ValueLive is false, then this value is being evaluated in a context where /// the result is not used. As such, avoid diagnostics that relate to /// evaluation, such as division by zero warnings. static bool EvaluateDirectiveSubExpr(PPValue &LHS, unsigned MinPrec, Token &PeekTok, bool ValueLive, Preprocessor &PP) { unsigned PeekPrec = getPrecedence(PeekTok.getKind()); // If this token isn't valid, report the error. if (PeekPrec == ~0U) { PP.Diag(PeekTok.getLocation(), diag::err_pp_expr_bad_token_binop) << LHS.getRange(); return true; } while (1) { // If this token has a lower precedence than we are allowed to parse, return // it so that higher levels of the recursion can parse it. if (PeekPrec < MinPrec) return false; tok::TokenKind Operator = PeekTok.getKind(); // If this is a short-circuiting operator, see if the RHS of the operator is // dead. Note that this cannot just clobber ValueLive. Consider // "0 && 1 ? 4 : 1 / 0", which is parsed as "(0 && 1) ? 4 : (1 / 0)". In // this example, the RHS of the && being dead does not make the rest of the // expr dead. bool RHSIsLive; if (Operator == tok::ampamp && LHS.Val == 0) RHSIsLive = false; // RHS of "0 && x" is dead. else if (Operator == tok::pipepipe && LHS.Val != 0) RHSIsLive = false; // RHS of "1 || x" is dead. else if (Operator == tok::question && LHS.Val == 0) RHSIsLive = false; // RHS (x) of "0 ? x : y" is dead. else RHSIsLive = ValueLive; // Consume the operator, remembering the operator's location for reporting. SourceLocation OpLoc = PeekTok.getLocation(); PP.LexNonComment(PeekTok); PPValue RHS(LHS.getBitWidth()); // Parse the RHS of the operator. DefinedTracker DT; if (EvaluateValue(RHS, PeekTok, DT, RHSIsLive, PP)) return true; // Remember the precedence of this operator and get the precedence of the // operator immediately to the right of the RHS. unsigned ThisPrec = PeekPrec; PeekPrec = getPrecedence(PeekTok.getKind()); // If this token isn't valid, report the error. if (PeekPrec == ~0U) { PP.Diag(PeekTok.getLocation(), diag::err_pp_expr_bad_token_binop) << RHS.getRange(); return true; } // Decide whether to include the next binop in this subexpression. For // example, when parsing x+y*z and looking at '*', we want to recursively // handle y*z as a single subexpression. We do this because the precedence // of * is higher than that of +. The only strange case we have to handle // here is for the ?: operator, where the precedence is actually lower than // the LHS of the '?'. The grammar rule is: // // conditional-expression ::= // logical-OR-expression ? expression : conditional-expression // where 'expression' is actually comma-expression. unsigned RHSPrec; if (Operator == tok::question) // The RHS of "?" should be maximally consumed as an expression. RHSPrec = getPrecedence(tok::comma); else // All others should munch while higher precedence. RHSPrec = ThisPrec+1; if (PeekPrec >= RHSPrec) { if (EvaluateDirectiveSubExpr(RHS, RHSPrec, PeekTok, RHSIsLive, PP)) return true; PeekPrec = getPrecedence(PeekTok.getKind()); } assert(PeekPrec <= ThisPrec && "Recursion didn't work!"); // Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if // either operand is unsigned. llvm::APSInt Res(LHS.getBitWidth()); switch (Operator) { case tok::question: // No UAC for x and y in "x ? y : z". case tok::lessless: // Shift amount doesn't UAC with shift value. case tok::greatergreater: // Shift amount doesn't UAC with shift value. case tok::comma: // Comma operands are not subject to UACs. case tok::pipepipe: // Logical || does not do UACs. case tok::ampamp: // Logical && does not do UACs. break; // No UAC default: Res.setIsUnsigned(LHS.isUnsigned()|RHS.isUnsigned()); // If this just promoted something from signed to unsigned, and if the // value was negative, warn about it. if (ValueLive && Res.isUnsigned()) { if (!LHS.isUnsigned() && LHS.Val.isNegative()) PP.Diag(OpLoc, diag::warn_pp_convert_lhs_to_positive) << LHS.Val.toString(10, true) + " to " + LHS.Val.toString(10, false) << LHS.getRange() << RHS.getRange(); if (!RHS.isUnsigned() && RHS.Val.isNegative()) PP.Diag(OpLoc, diag::warn_pp_convert_rhs_to_positive) << RHS.Val.toString(10, true) + " to " + RHS.Val.toString(10, false) << LHS.getRange() << RHS.getRange(); } LHS.Val.setIsUnsigned(Res.isUnsigned()); RHS.Val.setIsUnsigned(Res.isUnsigned()); } bool Overflow = false; switch (Operator) { default: llvm_unreachable("Unknown operator token!"); case tok::percent: if (RHS.Val != 0) Res = LHS.Val % RHS.Val; else if (ValueLive) { PP.Diag(OpLoc, diag::err_pp_remainder_by_zero) << LHS.getRange() << RHS.getRange(); return true; } break; case tok::slash: if (RHS.Val != 0) { if (LHS.Val.isSigned()) Res = llvm::APSInt(LHS.Val.sdiv_ov(RHS.Val, Overflow), false); else Res = LHS.Val / RHS.Val; } else if (ValueLive) { PP.Diag(OpLoc, diag::err_pp_division_by_zero) << LHS.getRange() << RHS.getRange(); return true; } break; case tok::star: if (Res.isSigned()) Res = llvm::APSInt(LHS.Val.smul_ov(RHS.Val, Overflow), false); else Res = LHS.Val * RHS.Val; break; case tok::lessless: { // Determine whether overflow is about to happen. unsigned ShAmt = static_cast<unsigned>(RHS.Val.getLimitedValue()); if (LHS.isUnsigned()) { Overflow = ShAmt >= LHS.Val.getBitWidth(); if (Overflow) ShAmt = LHS.Val.getBitWidth()-1; Res = LHS.Val << ShAmt; } else { Res = llvm::APSInt(LHS.Val.sshl_ov(ShAmt, Overflow), false); } break; } case tok::greatergreater: { // Determine whether overflow is about to happen. unsigned ShAmt = static_cast<unsigned>(RHS.Val.getLimitedValue()); if (ShAmt >= LHS.getBitWidth()) Overflow = true, ShAmt = LHS.getBitWidth()-1; Res = LHS.Val >> ShAmt; break; } case tok::plus: if (LHS.isUnsigned()) Res = LHS.Val + RHS.Val; else Res = llvm::APSInt(LHS.Val.sadd_ov(RHS.Val, Overflow), false); break; case tok::minus: if (LHS.isUnsigned()) Res = LHS.Val - RHS.Val; else Res = llvm::APSInt(LHS.Val.ssub_ov(RHS.Val, Overflow), false); break; case tok::lessequal: Res = LHS.Val <= RHS.Val; Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed) break; case tok::less: Res = LHS.Val < RHS.Val; Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed) break; case tok::greaterequal: Res = LHS.Val >= RHS.Val; Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed) break; case tok::greater: Res = LHS.Val > RHS.Val; Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed) break; case tok::exclaimequal: Res = LHS.Val != RHS.Val; Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed) break; case tok::equalequal: Res = LHS.Val == RHS.Val; Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed) break; case tok::amp: Res = LHS.Val & RHS.Val; break; case tok::caret: Res = LHS.Val ^ RHS.Val; break; case tok::pipe: Res = LHS.Val | RHS.Val; break; case tok::ampamp: Res = (LHS.Val != 0 && RHS.Val != 0); Res.setIsUnsigned(false); // C99 6.5.13p3, result is always int (signed) break; case tok::pipepipe: Res = (LHS.Val != 0 || RHS.Val != 0); Res.setIsUnsigned(false); // C99 6.5.14p3, result is always int (signed) break; case tok::comma: // Comma is invalid in pp expressions in c89/c++ mode, but is valid in C99 // if not being evaluated. if (!PP.getLangOpts().C99 || ValueLive) PP.Diag(OpLoc, diag::ext_pp_comma_expr) << LHS.getRange() << RHS.getRange(); Res = RHS.Val; // LHS = LHS,RHS -> RHS. break; case tok::question: { // Parse the : part of the expression. if (PeekTok.isNot(tok::colon)) { PP.Diag(PeekTok.getLocation(), diag::err_expected_colon) << LHS.getRange(), RHS.getRange(); PP.Diag(OpLoc, diag::note_matching) << "?"; return true; } // Consume the :. PP.LexNonComment(PeekTok); // Evaluate the value after the :. bool AfterColonLive = ValueLive && LHS.Val == 0; PPValue AfterColonVal(LHS.getBitWidth()); DefinedTracker DT; if (EvaluateValue(AfterColonVal, PeekTok, DT, AfterColonLive, PP)) return true; // Parse anything after the : with the same precedence as ?. We allow // things of equal precedence because ?: is right associative. if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec, PeekTok, AfterColonLive, PP)) return true; // Now that we have the condition, the LHS and the RHS of the :, evaluate. Res = LHS.Val != 0 ? RHS.Val : AfterColonVal.Val; RHS.setEnd(AfterColonVal.getRange().getEnd()); // Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if // either operand is unsigned. Res.setIsUnsigned(RHS.isUnsigned() | AfterColonVal.isUnsigned()); // Figure out the precedence of the token after the : part. PeekPrec = getPrecedence(PeekTok.getKind()); break; } case tok::colon: // Don't allow :'s to float around without being part of ?: exprs. PP.Diag(OpLoc, diag::err_pp_colon_without_question) << LHS.getRange() << RHS.getRange(); return true; } // If this operator is live and overflowed, report the issue. if (Overflow && ValueLive) PP.Diag(OpLoc, diag::warn_pp_expr_overflow) << LHS.getRange() << RHS.getRange(); // Put the result back into 'LHS' for our next iteration. LHS.Val = Res; LHS.setEnd(RHS.getRange().getEnd()); } }
/// EvaluateDefined - Process a 'defined(sym)' expression. static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT, bool ValueLive, Preprocessor &PP) { SourceLocation beginLoc(PeekTok.getLocation()); Result.setBegin(beginLoc); // Get the next token, don't expand it. PP.LexUnexpandedNonComment(PeekTok); // Two options, it can either be a pp-identifier or a (. SourceLocation LParenLoc; if (PeekTok.is(tok::l_paren)) { // Found a paren, remember we saw it and skip it. LParenLoc = PeekTok.getLocation(); PP.LexUnexpandedNonComment(PeekTok); } if (PeekTok.is(tok::code_completion)) { if (PP.getCodeCompletionHandler()) PP.getCodeCompletionHandler()->CodeCompleteMacroName(false); PP.setCodeCompletionReached(); PP.LexUnexpandedNonComment(PeekTok); } // If we don't have a pp-identifier now, this is an error. if (PP.CheckMacroName(PeekTok, MU_Other)) return true; // Otherwise, we got an identifier, is it defined to something? IdentifierInfo *II = PeekTok.getIdentifierInfo(); MacroDefinition Macro = PP.getMacroDefinition(II); Result.Val = !!Macro; Result.Val.setIsUnsigned(false); // Result is signed intmax_t. // If there is a macro, mark it used. if (Result.Val != 0 && ValueLive) PP.markMacroAsUsed(Macro.getMacroInfo()); // Save macro token for callback. Token macroToken(PeekTok); // If we are in parens, ensure we have a trailing ). if (LParenLoc.isValid()) { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexUnexpandedNonComment(PeekTok); if (PeekTok.isNot(tok::r_paren)) { PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_after) << "'defined'" << tok::r_paren; PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; return true; } // Consume the ). Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } else { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } // Invoke the 'defined' callback. if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { Callbacks->Defined(macroToken, Macro, SourceRange(beginLoc, PeekTok.getLocation())); } // Success, remember that we saw defined(X). DT.State = DefinedTracker::DefinedMacro; DT.TheMacro = II; return false; }
/// EvaluateDefined - Process a 'defined(sym)' expression. static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT, bool ValueLive, Preprocessor &PP) { SourceLocation beginLoc(PeekTok.getLocation()); Result.setBegin(beginLoc); // Get the next token, don't expand it. PP.LexUnexpandedNonComment(PeekTok); // Two options, it can either be a pp-identifier or a (. SourceLocation LParenLoc; if (PeekTok.is(tok::l_paren)) { // Found a paren, remember we saw it and skip it. LParenLoc = PeekTok.getLocation(); PP.LexUnexpandedNonComment(PeekTok); } if (PeekTok.is(tok::code_completion)) { if (PP.getCodeCompletionHandler()) PP.getCodeCompletionHandler()->CodeCompleteMacroName(false); PP.setCodeCompletionReached(); PP.LexUnexpandedNonComment(PeekTok); } // If we don't have a pp-identifier now, this is an error. if (PP.CheckMacroName(PeekTok, MU_Other)) return true; // Otherwise, we got an identifier, is it defined to something? IdentifierInfo *II = PeekTok.getIdentifierInfo(); MacroDefinition Macro = PP.getMacroDefinition(II); Result.Val = !!Macro; Result.Val.setIsUnsigned(false); // Result is signed intmax_t. // If there is a macro, mark it used. if (Result.Val != 0 && ValueLive) PP.markMacroAsUsed(Macro.getMacroInfo()); // Save macro token for callback. Token macroToken(PeekTok); // If we are in parens, ensure we have a trailing ). if (LParenLoc.isValid()) { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexUnexpandedNonComment(PeekTok); if (PeekTok.isNot(tok::r_paren)) { PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_after) << "'defined'" << tok::r_paren; PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; return true; } // Consume the ). Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } else { // Consume identifier. Result.setEnd(PeekTok.getLocation()); PP.LexNonComment(PeekTok); } // [cpp.cond]p4: // Prior to evaluation, macro invocations in the list of preprocessing // tokens that will become the controlling constant expression are replaced // (except for those macro names modified by the 'defined' unary operator), // just as in normal text. If the token 'defined' is generated as a result // of this replacement process or use of the 'defined' unary operator does // not match one of the two specified forms prior to macro replacement, the // behavior is undefined. // This isn't an idle threat, consider this program: // #define FOO // #define BAR defined(FOO) // #if BAR // ... // #else // ... // #endif // clang and gcc will pick the #if branch while Visual Studio will take the // #else branch. Emit a warning about this undefined behavior. if (beginLoc.isMacroID()) { bool IsFunctionTypeMacro = PP.getSourceManager() .getSLocEntry(PP.getSourceManager().getFileID(beginLoc)) .getExpansion() .isFunctionMacroExpansion(); // For object-type macros, it's easy to replace // #define FOO defined(BAR) // with // #if defined(BAR) // #define FOO 1 // #else // #define FOO 0 // #endif // and doing so makes sense since compilers handle this differently in // practice (see example further up). But for function-type macros, // there is no good way to write // # define FOO(x) (defined(M_ ## x) && M_ ## x) // in a different way, and compilers seem to agree on how to behave here. // So warn by default on object-type macros, but only warn in -pedantic // mode on function-type macros. if (IsFunctionTypeMacro) PP.Diag(beginLoc, diag::warn_defined_in_function_type_macro); else PP.Diag(beginLoc, diag::warn_defined_in_object_type_macro); } // Invoke the 'defined' callback. if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { Callbacks->Defined(macroToken, Macro, SourceRange(beginLoc, PeekTok.getLocation())); } // Success, remember that we saw defined(X). DT.State = DefinedTracker::DefinedMacro; DT.TheMacro = II; return false; }