void SkeletonModel::applyPalmData(int jointIndex, const QVector<int>& fingerJointIndices, const QVector<int>& fingertipJointIndices, PalmData& palm) { if (jointIndex == -1) { return; } const FBXGeometry& geometry = _geometry->getFBXGeometry(); float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f; glm::quat palmRotation; getJointRotation(jointIndex, palmRotation, true); applyRotationDelta(jointIndex, rotationBetween(palmRotation * geometry.palmDirection, palm.getNormal()), false); getJointRotation(jointIndex, palmRotation, true); // sort the finger indices by raw x, get the average direction QVector<IndexValue> fingerIndices; glm::vec3 direction; for (size_t i = 0; i < palm.getNumFingers(); i++) { glm::vec3 fingerVector = palm.getFingers()[i].getTipPosition() - palm.getPosition(); float length = glm::length(fingerVector); if (length > EPSILON) { direction += fingerVector / length; } fingerVector = glm::inverse(palmRotation) * fingerVector * -sign; IndexValue indexValue = { i, atan2f(fingerVector.z, fingerVector.x) }; fingerIndices.append(indexValue); } qSort(fingerIndices.begin(), fingerIndices.end()); // rotate palm according to average finger direction float directionLength = glm::length(direction); const int MIN_ROTATION_FINGERS = 3; if (directionLength > EPSILON && palm.getNumFingers() >= MIN_ROTATION_FINGERS) { applyRotationDelta(jointIndex, rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), direction), false); getJointRotation(jointIndex, palmRotation, true); } // no point in continuing if there are no fingers if (palm.getNumFingers() == 0 || fingerJointIndices.isEmpty()) { stretchArm(jointIndex, palm.getPosition()); return; } // match them up as best we can float proportion = fingerIndices.size() / (float)fingerJointIndices.size(); for (int i = 0; i < fingerJointIndices.size(); i++) { int fingerIndex = fingerIndices.at(roundf(i * proportion)).index; glm::vec3 fingerVector = palm.getFingers()[fingerIndex].getTipPosition() - palm.getFingers()[fingerIndex].getRootPosition(); int fingerJointIndex = fingerJointIndices.at(i); int fingertipJointIndex = fingertipJointIndices.at(i); glm::vec3 jointVector = extractTranslation(geometry.joints.at(fingertipJointIndex).bindTransform) - extractTranslation(geometry.joints.at(fingerJointIndex).bindTransform); setJointRotation(fingerJointIndex, rotationBetween(palmRotation * jointVector, fingerVector) * palmRotation, true); } stretchArm(jointIndex, palm.getPosition()); }
void BuckyBalls::grab(PalmData& palm, float deltaTime) { float penetration; glm::vec3 diff; FingerData& finger = palm.getFingers()[0]; // Sixense has only one finger glm::vec3 fingerTipPosition = finger.getTipPosition(); if (palm.getControllerButtons() & BUTTON_FWD) { if (!_bballIsGrabbed[palm.getSixenseID()]) { // Look for a ball to grab for (int i = 0; i < NUM_BBALLS; i++) { diff = _bballPosition[i] - fingerTipPosition; penetration = glm::length(diff) - (_bballRadius[i] + COLLISION_RADIUS); if (penetration < 0.f) { _bballIsGrabbed[palm.getSixenseID()] = i; } } } if (_bballIsGrabbed[palm.getSixenseID()]) { // If ball being grabbed, move with finger diff = _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] - fingerTipPosition; penetration = glm::length(diff) - (_bballRadius[_bballIsGrabbed[palm.getSixenseID()]] + COLLISION_RADIUS); _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] -= glm::normalize(diff) * penetration; glm::vec3 fingerTipVelocity = palm.getTipVelocity(); if (_bballElement[_bballIsGrabbed[palm.getSixenseID()]] != 1) { _bballVelocity[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipVelocity; } _bballPosition[_bballIsGrabbed[palm.getSixenseID()]] = fingerTipPosition; _bballColliding[_bballIsGrabbed[palm.getSixenseID()]] = 1.f; } } else { _bballIsGrabbed[palm.getSixenseID()] = 0; } }
void SkeletonModel::applyPalmData(int jointIndex, const QVector<int>& fingerJointIndices, const QVector<int>& fingertipJointIndices, PalmData& palm) { if (jointIndex == -1) { return; } const FBXGeometry& geometry = _geometry->getFBXGeometry(); float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f; int parentJointIndex = geometry.joints.at(jointIndex).parentIndex; if (parentJointIndex == -1) { return; } // rotate forearm to align with palm direction glm::quat palmRotation; getJointRotation(parentJointIndex, palmRotation, true); applyRotationDelta(parentJointIndex, rotationBetween(palmRotation * geometry.palmDirection, palm.getNormal()), false); getJointRotation(parentJointIndex, palmRotation, true); // sort the finger indices by raw x, get the average direction QVector<IndexValue> fingerIndices; glm::vec3 direction; for (size_t i = 0; i < palm.getNumFingers(); i++) { glm::vec3 fingerVector = palm.getFingers()[i].getTipPosition() - palm.getPosition(); float length = glm::length(fingerVector); if (length > EPSILON) { direction += fingerVector / length; } fingerVector = glm::inverse(palmRotation) * fingerVector * -sign; IndexValue indexValue = { (int)i, atan2f(fingerVector.z, fingerVector.x) }; fingerIndices.append(indexValue); } qSort(fingerIndices.begin(), fingerIndices.end()); // rotate forearm according to average finger direction float directionLength = glm::length(direction); const unsigned int MIN_ROTATION_FINGERS = 3; if (directionLength > EPSILON && palm.getNumFingers() >= MIN_ROTATION_FINGERS) { applyRotationDelta(parentJointIndex, rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), direction), false); getJointRotation(parentJointIndex, palmRotation, true); } // let wrist inherit forearm rotation _jointStates[jointIndex].rotation = glm::quat(); // set elbow position from wrist position glm::vec3 forearmVector = palmRotation * glm::vec3(sign, 0.0f, 0.0f); setJointPosition(parentJointIndex, palm.getPosition() + forearmVector * geometry.joints.at(jointIndex).distanceToParent * extractUniformScale(_scale)); }
void SixenseManager::update(float deltaTime) { #ifdef HAVE_SIXENSE if (sixenseGetNumActiveControllers() == 0) { return; } MyAvatar* avatar = Application::getInstance()->getAvatar(); Hand* hand = avatar->getHand(); int maxControllers = sixenseGetMaxControllers(); // we only support two controllers sixenseControllerData controllers[2]; int numActiveControllers = 0; for (int i = 0; i < maxControllers && numActiveControllers < 2; i++) { if (!sixenseIsControllerEnabled(i)) { continue; } sixenseControllerData* data = controllers + numActiveControllers; ++numActiveControllers; sixenseGetNewestData(i, data); // Set palm position and normal based on Hydra position/orientation // Either find a palm matching the sixense controller, or make a new one PalmData* palm; bool foundHand = false; for (size_t j = 0; j < hand->getNumPalms(); j++) { if (hand->getPalms()[j].getSixenseID() == data->controller_index) { palm = &(hand->getPalms()[j]); foundHand = true; } } if (!foundHand) { PalmData newPalm(hand); hand->getPalms().push_back(newPalm); palm = &(hand->getPalms()[hand->getNumPalms() - 1]); palm->setSixenseID(data->controller_index); printf("Found new Sixense controller, ID %i\n", data->controller_index); } palm->setActive(true); // Read controller buttons and joystick into the hand palm->setControllerButtons(data->buttons); palm->setTrigger(data->trigger); palm->setJoystick(data->joystick_x, data->joystick_y); glm::vec3 position(data->pos[0], data->pos[1], data->pos[2]); // Transform the measured position into body frame. glm::vec3 neck = _neckBase; // Zeroing y component of the "neck" effectively raises the measured position a little bit. neck.y = 0.f; position = _orbRotation * (position - neck); // Rotation of Palm glm::quat rotation(data->rot_quat[3], -data->rot_quat[0], data->rot_quat[1], -data->rot_quat[2]); rotation = glm::angleAxis(PI, glm::vec3(0.f, 1.f, 0.f)) * _orbRotation * rotation; const glm::vec3 PALM_VECTOR(0.0f, -1.0f, 0.0f); glm::vec3 newNormal = rotation * PALM_VECTOR; palm->setRawNormal(newNormal); palm->setRawRotation(rotation); // Compute current velocity from position change glm::vec3 rawVelocity = (position - palm->getRawPosition()) / deltaTime / 1000.f; palm->setRawVelocity(rawVelocity); // meters/sec palm->setRawPosition(position); // use the velocity to determine whether there's any movement (if the hand isn't new) const float MOVEMENT_SPEED_THRESHOLD = 0.05f; if (glm::length(rawVelocity) > MOVEMENT_SPEED_THRESHOLD && foundHand) { _lastMovement = usecTimestampNow(); } // initialize the "finger" based on the direction FingerData finger(palm, hand); finger.setActive(true); finger.setRawRootPosition(position); const float FINGER_LENGTH = 300.0f; // Millimeters const glm::vec3 FINGER_VECTOR(0.0f, 0.0f, FINGER_LENGTH); const glm::vec3 newTipPosition = position + rotation * FINGER_VECTOR; finger.setRawTipPosition(position + rotation * FINGER_VECTOR); // Store the one fingertip in the palm structure so we can track velocity glm::vec3 oldTipPosition = palm->getTipRawPosition(); palm->setTipVelocity((newTipPosition - oldTipPosition) / deltaTime / 1000.f); palm->setTipPosition(newTipPosition); // three fingers indicates to the skeleton that we have enough data to determine direction palm->getFingers().clear(); palm->getFingers().push_back(finger); palm->getFingers().push_back(finger); palm->getFingers().push_back(finger); } if (numActiveControllers == 2) { updateCalibration(controllers); } // if the controllers haven't been moved in a while, disable const unsigned int MOVEMENT_DISABLE_DURATION = 30 * 1000 * 1000; if (usecTimestampNow() - _lastMovement > MOVEMENT_DISABLE_DURATION) { for (std::vector<PalmData>::iterator it = hand->getPalms().begin(); it != hand->getPalms().end(); it++) { it->setActive(false); } } #endif // HAVE_SIXENSE }