int main(int argc, char *argv[]) { // parse arguments const char * optstring = "alho:npqsv:m"; int c; string output; bool doPairwise = false; bool doAutoOpt = false; bool doNormalOpt = false; bool doLevel = false; bool chooseProj = false; bool quiet = false; bool doPhotometric = false; double hfov = 0.0; while ((c = getopt (argc, argv, optstring)) != -1) { switch (c) { case 'o': output = optarg; break; case 'h': usage(argv[0]); return 0; case 'p': doPairwise = true; break; case 'a': doAutoOpt = true; break; case 'n': doNormalOpt = true; break; case 'l': doLevel = true; break; case 's': chooseProj = true; break; case 'q': quiet = true; break; case 'v': hfov = atof(optarg); break; case 'm': doPhotometric = true; break; default: abort (); } } if (argc - optind != 1) { usage(argv[0]); return 1; } const char * scriptFile = argv[optind]; Panorama pano; if (scriptFile[0] == '-') { DocumentData::ReadWriteError err = pano.readData(std::cin); if (err != DocumentData::SUCCESSFUL) { cerr << "error while reading script file from stdin." << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } } else { ifstream prjfile(scriptFile); if (!prjfile.good()) { cerr << "could not open script : " << scriptFile << endl; return 1; } pano.setFilePrefix(hugin_utils::getPathPrefix(scriptFile)); DocumentData::ReadWriteError err = pano.readData(prjfile); if (err != DocumentData::SUCCESSFUL) { cerr << "error while parsing panos tool script: " << scriptFile << endl; cerr << "DocumentData::ReadWriteError code: " << err << endl; return 1; } } if (pano.getNrOfImages() == 0) { cerr << "Panorama should consist of at least one image" << endl; return 1; } // for bad HFOV (from autopano-SIFT) for (unsigned i=0; i < pano.getNrOfImages(); i++) { SrcPanoImage img = pano.getSrcImage(i); if (img.getProjection() == SrcPanoImage::RECTILINEAR && img.getHFOV() >= 180) { // something is wrong here, try to read from exif data double focalLength = 0; double cropFactor = 0; cerr << "HFOV of image " << img.getFilename() << " invalid, trying to read EXIF tags" << endl; bool ok = img.readEXIF(focalLength, cropFactor, true, false); if (! ok) { if (hfov) { img.setHFOV(hfov); } else { cerr << "EXIF reading failed, please specify HFOV with -v" << endl; return 1; } } pano.setSrcImage(i, img); } } if(pano.getNrOfCtrlPoints()==0 && (doPairwise || doAutoOpt || doNormalOpt)) { cerr << "Panorama have to have control points to optimise positions" << endl; return 1; }; if (doPairwise && ! doAutoOpt) { // do pairwise optimisation set<string> optvars; optvars.insert("r"); optvars.insert("p"); optvars.insert("y"); AutoOptimise::autoOptimise(pano); // do global optimisation if (!quiet) std::cerr << "*** Pairwise position optimisation" << endl; PTools::optimize(pano); } else if (doAutoOpt) { if (!quiet) std::cerr << "*** Adaptive geometric optimisation" << endl; SmartOptimise::smartOptimize(pano); } else if (doNormalOpt) { if (!quiet) std::cerr << "*** Optimising parameters specified in PTO file" << endl; PTools::optimize(pano); } else { if (!quiet) std::cerr << "*** Geometric parameters not optimized" << endl; } if (doLevel) { bool hasVerticalLines=false; CPVector allCP=pano.getCtrlPoints(); if(allCP.size()>0 && (doPairwise || doAutoOpt || doNormalOpt)) { for(size_t i=0;i<allCP.size() && !hasVerticalLines;i++) { hasVerticalLines=(allCP[i].mode==ControlPoint::X); }; }; // straighten only if there are no vertical control points if(hasVerticalLines) { cout << "Skipping automatic leveling because of existing vertical control points." << endl; } else { StraightenPanorama(pano).run(); CenterHorizontally(pano).run(); }; } if (chooseProj) { PanoramaOptions opts = pano.getOptions(); double hfov, vfov; CalculateFitPanorama fitPano = CalculateFitPanorama(pano); fitPano.run(); opts.setHFOV(fitPano.getResultHorizontalFOV()); opts.setHeight(roundi(fitPano.getResultHeight())); vfov = opts.getVFOV(); hfov = opts.getHFOV(); // avoid perspective projection if field of view > 100 deg double mf = 100; if (vfov < mf) { // cylindrical or rectilinear if (hfov < mf) { opts.setProjection(PanoramaOptions::RECTILINEAR); } else { opts.setProjection(PanoramaOptions::CYLINDRICAL); } } // downscale pano a little double sizeFactor = 0.7; pano.setOptions(opts); double w = CalculateOptimalScale::calcOptimalScale(pano); opts.setWidth(roundi(opts.getWidth()*w*sizeFactor), true); pano.setOptions(opts); } if(doPhotometric) { // photometric estimation PanoramaOptions opts = pano.getOptions(); int nPoints = 200; int pyrLevel=3; bool randomPoints = true; nPoints = nPoints * pano.getNrOfImages(); std::vector<vigra_ext::PointPairRGB> points; ProgressDisplay *progressDisplay; if(!quiet) progressDisplay=new StreamProgressDisplay(std::cout); else progressDisplay=new DummyProgressDisplay(); try { loadImgsAndExtractPoints(pano, nPoints, pyrLevel, randomPoints, *progressDisplay, points, !quiet); } catch (std::exception & e) { cerr << "caught exception: " << e.what() << endl; return 1; }; if(!quiet) cout << "\rSelected " << points.size() << " points" << endl; if (points.size() == 0) { cerr << "Error: no overlapping points found, exiting" << endl; return 1; } progressDisplay->startSubtask("Photometric Optimization", 0.0); // first, ensure that vignetting and response coefficients are linked const HuginBase::ImageVariableGroup::ImageVariableEnum vars[] = { HuginBase::ImageVariableGroup::IVE_EMoRParams, HuginBase::ImageVariableGroup::IVE_ResponseType, HuginBase::ImageVariableGroup::IVE_VigCorrMode, HuginBase::ImageVariableGroup::IVE_RadialVigCorrCoeff, HuginBase::ImageVariableGroup::IVE_RadialVigCorrCenterShift }; HuginBase::StandardImageVariableGroups variable_groups(pano); HuginBase::ImageVariableGroup & lenses = variable_groups.getLenses(); for (size_t i = 0; i < lenses.getNumberOfParts(); i++) { std::set<HuginBase::ImageVariableGroup::ImageVariableEnum> links_needed; links_needed.clear(); for (int v = 0; v < 5; v++) { if (!lenses.getVarLinkedInPart(vars[v], i)) { links_needed.insert(vars[v]); } }; if (!links_needed.empty()) { std::set<HuginBase::ImageVariableGroup::ImageVariableEnum>::iterator it; for (it = links_needed.begin(); it != links_needed.end(); it++) { lenses.linkVariablePart(*it, i); } } } HuginBase::SmartPhotometricOptimizer::PhotometricOptimizeMode optmode = HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_LDR; if (opts.outputMode == PanoramaOptions::OUTPUT_HDR) { optmode = HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_HDR; } SmartPhotometricOptimizer photoOpt(pano, progressDisplay, pano.getOptimizeVector(), points, optmode); photoOpt.run(); // calculate the mean exposure. opts.outputExposureValue = CalculateMeanExposure::calcMeanExposure(pano); pano.setOptions(opts); progressDisplay->finishSubtask(); delete progressDisplay; }; // write result OptimizeVector optvec = pano.getOptimizeVector(); UIntSet imgs; fill_set(imgs,0, pano.getNrOfImages()-1); if (output != "") { ofstream of(output.c_str()); pano.printPanoramaScript(of, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile)); } else { pano.printPanoramaScript(cout, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile)); } return 0; }
SmallRemappedImageCache::MRemappedImage * SmallRemappedImageCache::getRemapped(const PanoramaData& pano, const PanoramaOptions & popts, unsigned int imgNr, vigra::Rect2D outputROI, AppBase::MultiProgressDisplay& progress) { // always map to HDR mode. curve and exposure is applied in preview window, for speed PanoramaOptions opts = popts; opts.outputMode = PanoramaOptions::OUTPUT_HDR; opts.outputExposureValue = 0.0; // return old image, if already in cache and if it has changed since the last rendering if (set_contains(m_images, imgNr)) { // return cached image if the parameters of the image have not changed SrcPanoImage oldParam = m_imagesParam[imgNr]; if (oldParam == pano.getSrcImage(imgNr) && m_panoOpts[imgNr].getHFOV() == opts.getHFOV() && m_panoOpts[imgNr].getWidth() == opts.getWidth() && m_panoOpts[imgNr].getHeight() == opts.getHeight() && m_panoOpts[imgNr].getProjection() == opts.getProjection() && m_panoOpts[imgNr].getProjectionParameters() == opts.getProjectionParameters() ) { DEBUG_DEBUG("using cached remapped image " << imgNr); return m_images[imgNr]; } } ImageCache::getInstance().softFlush(); typedef BasicImageView<RGBValue<unsigned char> > BRGBImageView; // typedef NumericTraits<PixelType>::RealPromote RPixelType; // remap image DEBUG_DEBUG("remapping image " << imgNr); // load image const SrcPanoImage & img = pano.getImage(imgNr); ImageCache::EntryPtr e = ImageCache::getInstance().getSmallImage(img.getFilename().c_str()); if ( (e->image8->width() == 0) && (e->image16->width() == 0) && (e->imageFloat->width() == 0) ) { throw std::runtime_error("could not retrieve small source image for preview generation"); } Size2D srcImgSize; if (e->image8->width() > 0) srcImgSize = e->image8->size(); else if (e->image16->width() > 0) srcImgSize = e->image16->size(); else srcImgSize = e->imageFloat->size(); MRemappedImage *remapped = new MRemappedImage; SrcPanoImage srcPanoImg = pano.getSrcImage(imgNr); // adjust distortion parameters for small preview image srcPanoImg.resize(srcImgSize); FImage srcFlat; // use complete image, by supplying an empty mask image BImage srcMask; if (img.getVigCorrMode() & SrcPanoImage::VIGCORR_FLATFIELD) { ImageCache::EntryPtr e = ImageCache::getInstance().getSmallImage(img.getFlatfieldFilename().c_str()); if (!e) { throw std::runtime_error("could not retrieve flatfield image for preview generation"); } if (e->image8->width()) { srcFlat.resize(e->image8->size()); copyImage(srcImageRange(*(e->image8), RGBToGrayAccessor<RGBValue<UInt8> >()), destImage(srcFlat)); } else if (e->image16->width()) { srcFlat.resize(e->image16->size()); copyImage(srcImageRange(*(e->image16), RGBToGrayAccessor<RGBValue<vigra::UInt16> >()), destImage(srcFlat)); } else { srcFlat.resize(e->imageFloat->size()); copyImage(srcImageRange(*(e->imageFloat), RGBToGrayAccessor<RGBValue<float> >()), destImage(srcFlat)); } } progress.pushTask(AppBase::ProgressTask("remapping", "", 0)); // compute the bounding output rectangle here! vigra::Rect2D outROI = estimateOutputROI(pano, opts, imgNr); DEBUG_DEBUG("srcPanoImg size: " << srcPanoImg.getSize() << " pano roi:" << outROI); if (e->imageFloat->width()) { // remap image remapImage(*(e->imageFloat), srcMask, srcFlat, srcPanoImg, opts, outROI, *remapped, progress); } else if (e->image16->width()) { // remap image remapImage(*(e->image16), srcMask, srcFlat, srcPanoImg, opts, outROI, *remapped, progress); } else { remapImage(*(e->image8), srcMask, srcFlat, srcPanoImg, opts, outROI, *remapped, progress); } progress.popTask(); m_images[imgNr] = remapped; m_imagesParam[imgNr] = pano.getSrcImage(imgNr); m_panoOpts[imgNr] = opts; return remapped; }