int main(int argc, char *argv[]) { // 1. Initialize MPI. int num_procs, myid; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &num_procs); MPI_Comm_rank(MPI_COMM_WORLD, &myid); // 2. Parse command-line options. const char *mesh_file = "../../data/star.mesh"; int order = 1; bool set_bc = true; bool static_cond = false; bool hybridization = false; bool visualization = 1; bool use_petsc = true; const char *petscrc_file = ""; bool use_nonoverlapping = false; OptionsParser args(argc, argv); args.AddOption(&mesh_file, "-m", "--mesh", "Mesh file to use."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&set_bc, "-bc", "--impose-bc", "-no-bc", "--dont-impose-bc", "Impose or not essential boundary conditions."); args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact" " solution."); args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc", "--no-static-condensation", "Enable static condensation."); args.AddOption(&hybridization, "-hb", "--hybridization", "-no-hb", "--no-hybridization", "Enable hybridization."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc", "--no-petsc", "Use or not PETSc to solve the linear system."); args.AddOption(&petscrc_file, "-petscopts", "--petscopts", "PetscOptions file to use."); args.AddOption(&use_nonoverlapping, "-nonoverlapping", "--nonoverlapping", "-no-nonoverlapping", "--no-nonoverlapping", "Use or not the block diagonal PETSc's matrix format " "for non-overlapping domain decomposition."); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } MPI_Finalize(); return 1; } if (myid == 0) { args.PrintOptions(cout); } // 2b. We initialize PETSc if (use_petsc) { MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); } kappa = freq * M_PI; // 3. Read the (serial) mesh from the given mesh file on all processors. We // can handle triangular, quadrilateral, tetrahedral, hexahedral, surface // and volume, as well as periodic meshes with the same code. Mesh *mesh = new Mesh(mesh_file, 1, 1); int dim = mesh->Dimension(); int sdim = mesh->SpaceDimension(); // 4. Refine the serial mesh on all processors to increase the resolution. In // this example we do 'ref_levels' of uniform refinement. We choose // 'ref_levels' to be the largest number that gives a final mesh with no // more than 1,000 elements. { int ref_levels = (int)floor(log(1000./mesh->GetNE())/log(2.)/dim); for (int l = 0; l < ref_levels; l++) { mesh->UniformRefinement(); } } // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine // this mesh further in parallel to increase the resolution. Once the // parallel mesh is defined, the serial mesh can be deleted. Tetrahedral // meshes need to be reoriented before we can define high-order Nedelec // spaces on them (this is needed in the ADS solver below). ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 2; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); } } pmesh->ReorientTetMesh(); // 6. Define a parallel finite element space on the parallel mesh. Here we // use the Raviart-Thomas finite elements of the specified order. FiniteElementCollection *fec = new RT_FECollection(order-1, dim); ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec); HYPRE_Int size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of finite element unknowns: " << size << endl; } // 7. Determine the list of true (i.e. parallel conforming) essential // boundary dofs. In this example, the boundary conditions are defined // by marking all the boundary attributes from the mesh as essential // (Dirichlet) and converting them to a list of true dofs. Array<int> ess_tdof_list; if (pmesh->bdr_attributes.Size()) { Array<int> ess_bdr(pmesh->bdr_attributes.Max()); ess_bdr = set_bc ? 1 : 0; fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list); } // 8. Set up the parallel linear form b(.) which corresponds to the // right-hand side of the FEM linear system, which in this case is // (f,phi_i) where f is given by the function f_exact and phi_i are the // basis functions in the finite element fespace. VectorFunctionCoefficient f(sdim, f_exact); ParLinearForm *b = new ParLinearForm(fespace); b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f)); b->Assemble(); // 9. Define the solution vector x as a parallel finite element grid function // corresponding to fespace. Initialize x by projecting the exact // solution. Note that only values from the boundary faces will be used // when eliminating the non-homogeneous boundary condition to modify the // r.h.s. vector b. ParGridFunction x(fespace); VectorFunctionCoefficient F(sdim, F_exact); x.ProjectCoefficient(F); // 10. Set up the parallel bilinear form corresponding to the H(div) // diffusion operator grad alpha div + beta I, by adding the div-div and // the mass domain integrators. Coefficient *alpha = new ConstantCoefficient(1.0); Coefficient *beta = new ConstantCoefficient(1.0); ParBilinearForm *a = new ParBilinearForm(fespace); a->AddDomainIntegrator(new DivDivIntegrator(*alpha)); a->AddDomainIntegrator(new VectorFEMassIntegrator(*beta)); // 11. Assemble the parallel bilinear form and the corresponding linear // system, applying any necessary transformations such as: parallel // assembly, eliminating boundary conditions, applying conforming // constraints for non-conforming AMR, static condensation, // hybridization, etc. FiniteElementCollection *hfec = NULL; ParFiniteElementSpace *hfes = NULL; if (static_cond) { a->EnableStaticCondensation(); } else if (hybridization) { hfec = new DG_Interface_FECollection(order-1, dim); hfes = new ParFiniteElementSpace(pmesh, hfec); a->EnableHybridization(hfes, new NormalTraceJumpIntegrator(), ess_tdof_list); } a->Assemble(); Vector B, X; CGSolver *pcg = new CGSolver(MPI_COMM_WORLD); pcg->SetRelTol(1e-12); pcg->SetMaxIter(500); pcg->SetPrintLevel(1); if (!use_petsc) { HypreParMatrix A; a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); HYPRE_Int glob_size = A.GetGlobalNumRows(); if (myid == 0) { cout << "Size of linear system: " << glob_size << endl; } // 12. Define and apply a parallel PCG solver for A X = B with the 2D AMS or // the 3D ADS preconditioners from hypre. If using hybridization, the // system is preconditioned with hypre's BoomerAMG. HypreSolver *prec = NULL; pcg->SetOperator(A); if (hybridization) { prec = new HypreBoomerAMG(A); } else { ParFiniteElementSpace *prec_fespace = (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace); if (dim == 2) { prec = new HypreAMS(A, prec_fespace); } else { prec = new HypreADS(A, prec_fespace); } } pcg->SetPreconditioner(*prec); pcg->Mult(B, X); delete prec; } else { PetscParMatrix A; PetscPreconditioner *prec = NULL; a->SetOperatorType(use_nonoverlapping ? Operator::PETSC_MATIS : Operator::PETSC_MATAIJ); a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B); if (myid == 0) { cout << "Size of linear system: " << A.M() << endl; } pcg->SetOperator(A); if (use_nonoverlapping) { ParFiniteElementSpace *prec_fespace = (a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace); // Auxiliary class for BDDC customization PetscBDDCSolverParams opts; // Inform the solver about the finite element space opts.SetSpace(prec_fespace); // Inform the solver about essential dofs opts.SetEssBdrDofs(&ess_tdof_list); // Create a BDDC solver with parameters prec = new PetscBDDCSolver(A, opts); } else { // Create an empty preconditioner that can be customized at runtime. prec = new PetscPreconditioner(A, "solver_"); } pcg->SetPreconditioner(*prec); pcg->Mult(B, X); delete prec; } delete pcg; // 13. Recover the parallel grid function corresponding to X. This is the // local finite element solution on each processor. a->RecoverFEMSolution(X, *b, x); // 14. Compute and print the L^2 norm of the error. { double err = x.ComputeL2Error(F); if (myid == 0) { cout << "\n|| F_h - F ||_{L^2} = " << err << '\n' << endl; } } // 15. Save the refined mesh and the solution in parallel. This output can // be viewed later using GLVis: "glvis -np <np> -m mesh -g sol". { ostringstream mesh_name, sol_name; mesh_name << "mesh." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 16. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 17. Free the used memory. delete hfes; delete hfec; delete a; delete alpha; delete beta; delete b; delete fespace; delete fec; delete pmesh; // We finalize PETSc if (use_petsc) { MFEMFinalizePetsc(); } MPI_Finalize(); return 0; }
int main(int argc, char *argv[]) { // 1. Initialize MPI. int num_procs, myid; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &num_procs); MPI_Comm_rank(MPI_COMM_WORLD, &myid); // 2. Parse command-line options. int elem_type = 1; int ref_levels = 2; int amr = 0; int order = 2; bool always_snap = false; bool visualization = 1; OptionsParser args(argc, argv); args.AddOption(&elem_type, "-e", "--elem", "Type of elements to use: 0 - triangles, 1 - quads."); args.AddOption(&order, "-o", "--order", "Finite element order (polynomial degree)."); args.AddOption(&ref_levels, "-r", "--refine", "Number of times to refine the mesh uniformly."); args.AddOption(&amr, "-amr", "--refine-locally", "Additional local (non-conforming) refinement:" " 1 = refine around north pole, 2 = refine randomly."); args.AddOption(&visualization, "-vis", "--visualization", "-no-vis", "--no-visualization", "Enable or disable GLVis visualization."); args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap", "--snap-at-the-end", "If true, snap nodes to the sphere initially and after each refinement " "otherwise, snap only after the last refinement"); args.Parse(); if (!args.Good()) { if (myid == 0) { args.PrintUsage(cout); } MPI_Finalize(); return 1; } if (myid == 0) { args.PrintOptions(cout); } // 3. Generate an initial high-order (surface) mesh on the unit sphere. The // Mesh object represents a 2D mesh in 3 spatial dimensions. We first add // the elements and the vertices of the mesh, and then make it high-order // by specifying a finite element space for its nodes. int Nvert = 8, Nelem = 6; if (elem_type == 0) { Nvert = 6; Nelem = 8; } Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3); if (elem_type == 0) // inscribed octahedron { const double tri_v[6][3] = { { 1, 0, 0}, { 0, 1, 0}, {-1, 0, 0}, { 0, -1, 0}, { 0, 0, 1}, { 0, 0, -1} }; const int tri_e[8][3] = { {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4}, {1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5} }; for (int j = 0; j < Nvert; j++) { mesh->AddVertex(tri_v[j]); } for (int j = 0; j < Nelem; j++) { int attribute = j + 1; mesh->AddTriangle(tri_e[j], attribute); } mesh->FinalizeTriMesh(1, 1, true); } else // inscribed cube { const double quad_v[8][3] = { {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1}, {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1} }; const int quad_e[6][4] = { {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5}, {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7} }; for (int j = 0; j < Nvert; j++) { mesh->AddVertex(quad_v[j]); } for (int j = 0; j < Nelem; j++) { int attribute = j + 1; mesh->AddQuad(quad_e[j], attribute); } mesh->FinalizeQuadMesh(1, 1, true); } // Set the space for the high-order mesh nodes. H1_FECollection fec(order, mesh->Dimension()); FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension()); mesh->SetNodalFESpace(&nodal_fes); // 4. Refine the mesh while snapping nodes to the sphere. Number of parallel // refinements is fixed to 2. for (int l = 0; l <= ref_levels; l++) { if (l > 0) // for l == 0 just perform snapping { mesh->UniformRefinement(); } // Snap the nodes of the refined mesh back to sphere surface. if (always_snap) { SnapNodes(*mesh); } } if (amr == 1) { for (int l = 0; l < 3; l++) { mesh->RefineAtVertex(Vertex(0, 0, 1)); } SnapNodes(*mesh); } else if (amr == 2) { for (int l = 0; l < 2; l++) { mesh->RandomRefinement(0.5); // 50% probability } SnapNodes(*mesh); } ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh); delete mesh; { int par_ref_levels = 2; for (int l = 0; l < par_ref_levels; l++) { pmesh->UniformRefinement(); // Snap the nodes of the refined mesh back to sphere surface. if (always_snap) { SnapNodes(*pmesh); } } if (!always_snap || par_ref_levels < 1) { SnapNodes(*pmesh); } } if (amr == 1) { for (int l = 0; l < 2; l++) { pmesh->RefineAtVertex(Vertex(0, 0, 1)); } SnapNodes(*pmesh); } else if (amr == 2) { for (int l = 0; l < 2; l++) { pmesh->RandomRefinement(0.5); // 50% probability } SnapNodes(*pmesh); } // 5. Define a finite element space on the mesh. Here we use isoparametric // finite elements -- the same as the mesh nodes. ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, &fec); HYPRE_Int size = fespace->GlobalTrueVSize(); if (myid == 0) { cout << "Number of unknowns: " << size << endl; } // 6. Set up the linear form b(.) which corresponds to the right-hand side of // the FEM linear system, which in this case is (1,phi_i) where phi_i are // the basis functions in the finite element fespace. ParLinearForm *b = new ParLinearForm(fespace); ConstantCoefficient one(1.0); FunctionCoefficient rhs_coef (analytic_rhs); FunctionCoefficient sol_coef (analytic_solution); b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef)); b->Assemble(); // 7. Define the solution vector x as a finite element grid function // corresponding to fespace. Initialize x with initial guess of zero. ParGridFunction x(fespace); x = 0.0; // 8. Set up the bilinear form a(.,.) on the finite element space // corresponding to the Laplacian operator -Delta, by adding the Diffusion // and Mass domain integrators. ParBilinearForm *a = new ParBilinearForm(fespace); a->AddDomainIntegrator(new DiffusionIntegrator(one)); a->AddDomainIntegrator(new MassIntegrator(one)); // 9. Assemble the parallel linear system, applying any transformations // such as: parallel assembly, applying conforming constraints, etc. a->Assemble(); HypreParMatrix A; Vector B, X; Array<int> empty_tdof_list; a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B); // 10. Define and apply a parallel PCG solver for AX=B with the BoomerAMG // preconditioner from hypre. Extract the parallel grid function x // corresponding to the finite element approximation X. This is the local // solution on each processor. HypreSolver *amg = new HypreBoomerAMG(A); HyprePCG *pcg = new HyprePCG(A); pcg->SetTol(1e-12); pcg->SetMaxIter(200); pcg->SetPrintLevel(2); pcg->SetPreconditioner(*amg); pcg->Mult(B, X); a->RecoverFEMSolution(X, *b, x); delete a; delete b; // 11. Compute and print the L^2 norm of the error. double err = x.ComputeL2Error(sol_coef); if (myid == 0) { cout << "\nL2 norm of error: " << err << endl; } // 12. Save the refined mesh and the solution. This output can be viewed // later using GLVis: "glvis -np <np> -m sphere_refined -g sol". { ostringstream mesh_name, sol_name; mesh_name << "sphere_refined." << setfill('0') << setw(6) << myid; sol_name << "sol." << setfill('0') << setw(6) << myid; ofstream mesh_ofs(mesh_name.str().c_str()); mesh_ofs.precision(8); pmesh->Print(mesh_ofs); ofstream sol_ofs(sol_name.str().c_str()); sol_ofs.precision(8); x.Save(sol_ofs); } // 13. Send the solution by socket to a GLVis server. if (visualization) { char vishost[] = "localhost"; int visport = 19916; socketstream sol_sock(vishost, visport); sol_sock << "parallel " << num_procs << " " << myid << "\n"; sol_sock.precision(8); sol_sock << "solution\n" << *pmesh << x << flush; } // 14. Free the used memory. delete pcg; delete amg; delete fespace; delete pmesh; MPI_Finalize(); return 0; }