void checkFluidSystem() { std::cout << "Testing fluid system '" << Dune::className<FluidSystem>() << "'\n"; // make sure the fluid system provides the number of phases and // the number of components enum { numPhases = FluidSystem::numPhases }; enum { numComponents = FluidSystem::numComponents }; typedef HairSplittingFluidState<RhsEval, FluidSystem> FluidState; FluidState fs; fs.allowTemperature(true); fs.allowPressure(true); fs.allowComposition(true); fs.restrictToPhase(-1); // initialize memory the fluid state fs.base().setTemperature(273.15 + 20.0); for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { fs.base().setPressure(phaseIdx, 1e5); fs.base().setSaturation(phaseIdx, 1.0/numPhases); for (int compIdx = 0; compIdx < numComponents; ++ compIdx) { fs.base().setMoleFraction(phaseIdx, compIdx, 1.0/numComponents); } } static_assert(std::is_same<typename FluidSystem::Scalar, Scalar>::value, "The type used for floating point used by the fluid system must be the same" " as the one passed to the checkFluidSystem() function"); // check whether the parameter cache adheres to the API typedef typename FluidSystem::template ParameterCache<LhsEval> ParameterCache; ParameterCache paramCache; try { paramCache.updateAll(fs); } catch (...) {}; try { paramCache.updateAll(fs, /*except=*/ParameterCache::None); } catch (...) {}; try { paramCache.updateAll(fs, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {}; try { paramCache.updateAllPressures(fs); } catch (...) {}; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { fs.restrictToPhase(static_cast<int>(phaseIdx)); try { paramCache.updatePhase(fs, phaseIdx); } catch (...) {}; try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::None); } catch (...) {}; try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {}; try { paramCache.updateTemperature(fs, phaseIdx); } catch (...) {}; try { paramCache.updatePressure(fs, phaseIdx); } catch (...) {}; try { paramCache.updateComposition(fs, phaseIdx); } catch (...) {}; try { paramCache.updateSingleMoleFraction(fs, phaseIdx, /*compIdx=*/0); } catch (...) {}; } // some value to make sure the return values of the fluid system // are convertible to scalars LhsEval val = 0.0; Scalar scalarVal = 0.0; scalarVal = 2*scalarVal; // get rid of GCC warning (only occurs with paranoid warning flags) val = 2*val; // get rid of GCC warning (only occurs with paranoid warning flags) // actually check the fluid system API try { FluidSystem::init(); } catch (...) {}; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { fs.restrictToPhase(static_cast<int>(phaseIdx)); fs.allowPressure(FluidSystem::isCompressible(phaseIdx)); fs.allowComposition(true); fs.allowDensity(false); try { auto tmpVal OPM_UNUSED = FluidSystem::density(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template density<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template density<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; fs.allowPressure(true); fs.allowDensity(true); try { auto tmpVal OPM_UNUSED = FluidSystem::viscosity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED = FluidSystem::enthalpy(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED = FluidSystem::heatCapacity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED= FluidSystem::thermalConductivity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template viscosity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template enthalpy<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template heatCapacity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template thermalConductivity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template viscosity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template enthalpy<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template heatCapacity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template thermalConductivity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) { fs.allowComposition(!FluidSystem::isIdealMixture(phaseIdx)); try { auto tmpVal OPM_UNUSED = FluidSystem::fugacityCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template fugacityCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; fs.allowComposition(true); try { auto tmpVal OPM_UNUSED = FluidSystem::diffusionCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template diffusionCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; } } // test for phaseName(), isLiquid() and isIdealGas() for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { std::string name OPM_UNUSED = FluidSystem::phaseName(phaseIdx); bool bVal = FluidSystem::isLiquid(phaseIdx); bVal = FluidSystem::isIdealGas(phaseIdx); bVal = !bVal; // get rid of GCC warning (only occurs with paranoid warning flags) } // test for molarMass() and componentName() for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) { val = FluidSystem::molarMass(compIdx); std::string name = FluidSystem::componentName(compIdx); } std::cout << "----------------------------------\n"; }
static Scalar linearize_(Dune::FieldMatrix<Evaluation, numComponents, numComponents> &J, Dune::FieldVector<Evaluation, numComponents> &defect, FluidState &fluidState, ParameterCache ¶mCache, int phaseIdx, const ComponentVector &targetFug) { typedef MathToolbox<Evaluation> Toolbox; // reset jacobian J = 0; Scalar absError = 0; // calculate the defect (deviation of the current fugacities // from the target fugacities) for (int i = 0; i < numComponents; ++ i) { const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, i); const Evaluation& f = phi*fluidState.pressure(phaseIdx)*fluidState.moleFraction(phaseIdx, i); fluidState.setFugacityCoefficient(phaseIdx, i, phi); defect[i] = targetFug[i] - f; absError = std::max(absError, std::abs(Toolbox::value(defect[i]))); } // assemble jacobian matrix of the constraints for the composition static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e6; for (int i = 0; i < numComponents; ++ i) { //////// // approximately calculate partial derivatives of the // fugacity defect of all components in regard to the mole // fraction of the i-th component. This is done via // forward differences // deviate the mole fraction of the i-th component Evaluation xI = fluidState.moleFraction(phaseIdx, i); fluidState.setMoleFraction(phaseIdx, i, xI + eps); paramCache.updateSingleMoleFraction(fluidState, phaseIdx, i); // compute new defect and derivative for all component // fugacities for (int j = 0; j < numComponents; ++j) { // compute the j-th component's fugacity coefficient ... const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, j); // ... and its fugacity ... const Evaluation& f = phi * fluidState.pressure(phaseIdx) * fluidState.moleFraction(phaseIdx, j); // as well as the defect for this fugacity const Evaluation& defJPlusEps = targetFug[j] - f; // use forward differences to calculate the defect's // derivative J[j][i] = (defJPlusEps - defect[j])/eps; } // reset composition to original value fluidState.setMoleFraction(phaseIdx, i, xI); paramCache.updateSingleMoleFraction(fluidState, phaseIdx, i); // end forward differences //////// } return absError; }