// copyVertexListToPointList a vector for Vec3 into a vector of Point's. void copyVertexListToPointList(const VertexList& in,PointList& out) { out.reserve(in.size()); for(VertexList::const_iterator itr=in.begin(); itr!=in.end(); ++itr) { out.push_back(Point(0,*itr)); } }
// adapted from http://www.cgal.org/Manual/beta/examples/Surface_reconstruction_points_3/poisson_reconstruction_example.cpp Mesh poissonSurface(const Mat ipoints, const Mat normals) { // Poisson options FT sm_angle = 20.0; // Min triangle angle in degrees. FT sm_radius = 300; // Max triangle size w.r.t. point set average spacing. FT sm_distance = 0.375; // Surface Approximation error w.r.t. point set average spacing. PointList points; points.reserve(ipoints.rows); float min = 0, max = 0; for (int i=0; i<ipoints.rows; i++) { float const *p = ipoints.ptr<float const>(i), *n = normals.ptr<float const>(i); points.push_back(Point_with_normal(Point(p[0]/p[3], p[1]/p[3], p[2]/p[3]), Vector(n[0], n[1], n[2]))); if (p[0]/p[3] > max) max = p[0]/p[3]; if (p[0]/p[3] < min) min = p[0]/p[3]; } // Creates implicit function from the read points using the default solver. // Note: this method requires an iterator over points // + property maps to access each point's position and normal. // The position property map can be omitted here as we use iterators over Point_3 elements. Poisson_reconstruction_function function(points.begin(), points.end(), CGAL::make_normal_of_point_with_normal_pmap(points.begin()) ); // Computes the Poisson indicator function f() at each vertex of the triangulation. bool success = function.compute_implicit_function(); assert(success); #ifdef TEST_BUILD printf("implicit function ready. Meshing...\n"); #endif // Computes average spacing FT average_spacing = CGAL::compute_average_spacing(points.begin(), points.end(), 6 /* knn = 1 ring */); // Gets one point inside the implicit surface // and computes implicit function bounding sphere radius. Point inner_point = function.get_inner_point(); Sphere bsphere = function.bounding_sphere(); FT radius = std::sqrt(bsphere.squared_radius()); // Defines the implicit surface: requires defining a // conservative bounding sphere centered at inner point. FT sm_sphere_radius = 5.0 * radius; FT sm_dichotomy_error = sm_distance*average_spacing/1000.0; // Dichotomy error must be << sm_distance Surface_3 surface(function, Sphere(inner_point,sm_sphere_radius*sm_sphere_radius), sm_dichotomy_error/sm_sphere_radius); // Defines surface mesh generation criteria // parameters: min triangle angle (degrees), max triangle size, approximation error CGAL::Surface_mesh_default_criteria_3<STr> criteria(sm_angle, sm_radius*average_spacing, sm_distance*average_spacing); // Generates surface mesh with manifold option STr tr; // 3D Delaunay triangulation for surface mesh generation C2t3 c2t3(tr); // 2D complex in 3D Delaunay triangulation // parameters: reconstructed mesh, implicit surface, meshing criteria, 'do not require manifold mesh' CGAL::make_surface_mesh(c2t3, surface, criteria, CGAL::Non_manifold_tag()); assert(tr.number_of_vertices() > 0); // Search structure: index of the vertex at an exactly given position std::map<Point, int> vertexIndices; // Extract all vertices of the resulting mesh Mat vertices(tr.number_of_vertices(), 4, CV_32FC1), faces(c2t3.number_of_facets(), 3, CV_32SC1); #ifdef TEST_BUILD printf("%i vertices, %i facets. Converting...\n", vertices.rows, faces.rows); #endif { int i=0; for (C2t3::Vertex_iterator it=c2t3.vertices_begin(); it!=c2t3.vertices_end(); it++, i++) { float *vertex = vertices.ptr<float>(i); Point p = it->point(); vertex[0] = p.x(); vertex[1] = p.y(); vertex[2] = p.z(); vertex[3] = 1; vertexIndices[p] = i; } vertices.resize(i); } // Extract all faces of the resulting mesh and calculate the index of each of their vertices { int i=0; for (C2t3::Facet_iterator it=c2t3.facets_begin(); it!=c2t3.facets_end(); it++, i++) { Cell cell = *it->first; int vertex_excluded = it->second; int32_t* outfacet = faces.ptr<int32_t>(i); // a little magic so that face normals are oriented outside char sign = (function(cell.vertex(vertex_excluded)->point()) > 0) ? 1 : 2; // 2 = -1 (mod 3) for (char j = vertex_excluded + 1; j < vertex_excluded + 4; j++) { outfacet[(sign*j)%3] = vertexIndices[cell.vertex(j%4)->point()]; } } } return Mesh(vertices, faces); }
bool ShadowVolumeOccluder::computeOccluder(const NodePath& nodePath,const ConvexPlanarOccluder& occluder,CullStack& cullStack,bool /*createDrawables*/) { // std::cout<<" Computing Occluder"<<std::endl; CullingSet& cullingset = cullStack.getCurrentCullingSet(); const RefMatrix& MV = *cullStack.getModelViewMatrix(); const RefMatrix& P = *cullStack.getProjectionMatrix(); // take a reference to the NodePath to this occluder. _nodePath = nodePath; // take a reference to the projection matrix. _projectionMatrix = &P; // initialize the volume _volume = 0.0f; // compute the inverse of the projection matrix. Matrix invP; invP.invert(P); float volumeview = cullStack.getFrustumVolume(); // compute the transformation matrix which takes form local coords into clip space. Matrix MVP(MV*P); // for the occluder polygon and each of the holes do // first transform occluder polygon into clipspace by multiple it by c[i] = v[i]*(MV*P) // then push to coords to far plane by setting its coord to c[i].z = -1. // then transform far plane polygon back into projection space, by p[i]*inv(P) // compute orientation of front plane, if normal.z()<0 then facing away from eye pont, so reverse the polygons, or simply invert planes. // compute volume (quality) betwen front polygon in projection space and back polygon in projection space. const VertexList& vertices_in = occluder.getOccluder().getVertexList(); PointList points; if (clip(cullingset.getFrustum().getPlaneList(),vertices_in,points)>=3) { // compute the points on the far plane. PointList farPoints; farPoints.reserve(points.size()); transform(points,farPoints,MVP); pushToFarPlane(farPoints); transform(farPoints,invP); // move the occlude points into projection space. transform(points,MV); // use the points on the front plane as reference vertices on the _occluderVolume // so that the vertices can later by used to test for occlusion of the occluder itself. copyPointListToVertexList(points,_occluderVolume.getReferenceVertexList()); // create the front face of the occluder Plane occludePlane = computeFrontPlane(points); _occluderVolume.add(occludePlane); // create the sides of the occluder computePlanes(points,farPoints,_occluderVolume.getPlaneList()); _occluderVolume.setupMask(); // if the front face is pointing away from the eye point flip the whole polytope. if (occludePlane[3]>0.0f) { _occluderVolume.flip(); } _volume = computePolytopeVolume(points,farPoints)/volumeview; for(ConvexPlanarOccluder::HoleList::const_iterator hitr=occluder.getHoleList().begin(); hitr!=occluder.getHoleList().end(); ++hitr) { PointList points; if (clip(cullingset.getFrustum().getPlaneList(),hitr->getVertexList(),points)>=3) { _holeList.push_back(Polytope()); Polytope& polytope = _holeList.back(); // compute the points on the far plane. PointList farPoints; farPoints.reserve(points.size()); transform(points,farPoints,MVP); pushToFarPlane(farPoints); transform(farPoints,invP); // move the occlude points into projection space. transform(points,MV); // use the points on the front plane as reference vertices on the _occluderVolume // so that the vertices can later by used to test for occlusion of the occluder itself. copyPointListToVertexList(points,polytope.getReferenceVertexList()); // create the front face of the occluder Plane occludePlane = computeFrontPlane(points); // create the sides of the occluder computePlanes(points,farPoints,polytope.getPlaneList()); polytope.setupMask(); // if the front face is pointing away from the eye point flip the whole polytope. if (occludePlane[3]>0.0f) { polytope.flip(); } // remove the hole's volume from the occluder volume. _volume -= computePolytopeVolume(points,farPoints)/volumeview; } } //std::cout << "final volume = "<<_volume<<std::endl; return true; } return false; }