示例#1
0
bool Polygon2::containsAllOf(const Polygon2 &polygon) const
{
	// If any vertex of @polygon is outside the boundary of @this, then
	// @polygon is not wholly inside @this
	for (int polyI = 0; polyI < polygon.size(); polyI++)
	{
		if ( !contains( polygon[polyI] ) )
		{
			return false;
		}
	}

	// If any edge of @polygon intersects @this, then
	// @polygon is not wholly contained within @this
	int edgeIPrev = polygon.size() - 1;
	for (int edgeI = 0; edgeI < polygon.size(); edgeI++)
	{
		Segment2 edge( polygon[edgeIPrev], polygon[edgeI] );

		if ( checkEdgeIntersection( edge ) )
		{
			return false;
		}

		edgeIPrev = edgeI;
	}

	return true;
}
示例#2
0
bool Polygon2::containsPartOf(const Polygon2 &polygon) const
{
	// If any vertex of @polygon is inside the boundary of @this, then
	// @polygon is partially inside @this
	for (int polyI = 0; polyI < polygon.size(); polyI++)
	{
		if ( contains( polygon[polyI] ) )
		{
			return true;
		}
	}

	// If any vertex of @this is inside the boundary of @polygon, then
	// @polygon is partially inside @this
	for (int vertexI = 0; vertexI < vertices.size(); vertexI++)
	{
		if ( polygon.contains( vertices[vertexI] ) )
		{
			return true;
		}
	}

	// If any edge of @polygon intersects @this, then
	// @polygon is partially inside @this
	int edgeIPrev = polygon.size() - 1;
	for (int edgeI = 0; edgeI < polygon.size(); edgeI++)
	{
		Segment2 edge( polygon[edgeIPrev], polygon[edgeI] );

		if ( checkEdgeIntersection( edge ) )
		{
			return true;
		}

		edgeIPrev = edgeI;
	}

	// No intersection at all
	return false;
}
示例#3
0
void	CreateTranslatorForPolygon(
					const Polygon2&		poly,
					CoordTranslator2&	trans)
{
	if (poly.empty()) return;
	trans.mSrcMin = poly[0];
	trans.mSrcMax = poly[0];
	for (int n = 1; n < poly.size(); ++n)
	{
		trans.mSrcMin.x_ = min(trans.mSrcMin.x(), poly[n].x());
		trans.mSrcMin.y_ = min(trans.mSrcMin.y(), poly[n].y());
		trans.mSrcMax.x_ = max(trans.mSrcMax.x(), poly[n].x());
		trans.mSrcMax.y_ = max(trans.mSrcMax.y(), poly[n].y());
	}

	trans.mDstMin.x_ = 0.0;
	trans.mDstMax.y_ = 0.0;
	trans.mDstMax.x_ = (trans.mSrcMax.x() - trans.mSrcMin.x()) * DEG_TO_MTR_LAT * cos((trans.mSrcMin.y() + trans.mSrcMax.y()) * 0.5 * DEG_TO_RAD);
	trans.mDstMax.y_ = (trans.mSrcMax.y() - trans.mSrcMin.y()) * DEG_TO_MTR_LAT;
}
示例#4
0
bool	build_convex_polygon(
				Pmwx::Ccb_halfedge_circulator									ccb,
				vector<pair<Pmwx::Halfedge_handle, Pmwx::Halfedge_handle> >&	sides,
				const CoordTranslator2&											trans,
				Polygon2&														metric_bounds,
				double															max_err_mtrs,
				double															min_side_len)
{
	double	e_sq = max_err_mtrs*max_err_mtrs;
	sides.clear();
	metric_bounds.clear();
	
	Pmwx::Ccb_halfedge_circulator circ(ccb);
//	Bbox2				bounds;
//	
//	do {
//		bounds += cgal2ben(circ->source()->point());
//	} while (++circ != ccb);

	Pmwx::Ccb_halfedge_circulator start,next;
	start = ccb;
	do {
		--start;
		if(!sides_can_merge(start,ccb))
			break;
		if(!within_err_metric(start,ccb,trans,e_sq))
			break;		
	} while(start != ccb);
	++start;
	
	// now we can go around.

	circ = start;
	//int ne = count_circulator(start);
	//printf("Poly has %d sides.\n", ne);
	do {
	 
		Pmwx::Ccb_halfedge_circulator stop(circ);
		do {
			++stop;
		} while(sides_can_merge(circ,stop) && within_err_metric(circ,stop,trans,e_sq) && stop != start);
	
		--stop;
		//printf("Pushing side of %d, %d\n", circulator_distance_to(start, circ),circulator_distance_to(start,stop));
		sides.push_back(pair<Pmwx::Halfedge_handle,Pmwx::Halfedge_handle>(circ, stop));
		++stop;
		circ = stop;
	
	} while(circ != start);
	
	if(sides.size() < 3)	
	{
		//debug_mesh_point(bounds.centroid(),1,1,1);
		return false;
	}
	
	int i, j, k;
	
	vector<Segment2>	msides;
	for(i = 0; i < sides.size(); ++i)
	{
		j = (i + 1) % sides.size();		
		DebugAssert(sides[i].second->target() == sides[j].first->source());
		msides.push_back(Segment2(
						trans.Forward(cgal2ben(sides[i].first->source()->point())),
						trans.Forward(cgal2ben(sides[i].second->target()->point()))));						
	}	
	vector<Segment2>	debug(msides);
	for(i = 0; i < sides.size(); ++i)
	{
		j = (i + 1) % sides.size();		
		Vector2	v1(msides[i].p1,msides[i].p2);
		Vector2	v2(msides[j].p1,msides[j].p2);
		v1.normalize();
		v2.normalize();
		if(v1.dot(v2) > 0.9998 ||
			!v1.left_turn(v2))
		{
			//debug_mesh_point(trans.Reverse(msides[i].p2),1,0,0);
			return false;
		}
		double w = width_for_he(sides[i].first);
		if(w)
		{
			v1 = v1.perpendicular_ccw();
			v1 *= w;
			msides[i].p1 += v1;
			msides[i].p2 += v1;
		}
	}
	for(j = 0; j < sides.size(); ++j)
	{
		i = (j + sides.size() - 1) % sides.size();
		Line2 li(msides[i]), lj(msides[j]);
		Point2	p;
		if(!li.intersect(lj,p))
		{
			Assert(!"Failure to intersect.\n");
			return false;
		}
		metric_bounds.push_back(p);
	}
	
	for(i = 0; i < metric_bounds.size(); ++i)
	{
		j = (i + 1) % metric_bounds.size();
		k = (i + 2) % metric_bounds.size();
		if(metric_bounds.side(i).squared_length() < (min_side_len*min_side_len))
		{
			//debug_mesh_line(trans.Reverse(metric_bounds.side(i).p1),trans.Reverse(metric_bounds.side(i).p2),1,1,0,1,1,0);
			return false;
		}
		if(!left_turn(metric_bounds[i],metric_bounds[j],metric_bounds[k]))
		{
			//debug_mesh_point(trans.Reverse(metric_bounds[j]),1,1,0);
			return false;
		}
		if(Vector2(msides[i].p1,msides[i].p2).dot(Vector2(metric_bounds[i],metric_bounds[j])) < 0.0)
		{
			//debug_mesh_line(trans.Reverse(msides[i].p1),trans.Reverse(msides[i].p2),1,0,0,1,0,0);
			return false;
		}
	}
	DebugAssert(metric_bounds.size() == msides.size());
	DebugAssert(msides.size() == sides.size());
		
	return true;
}