int main(int argc, char* argv[]) { EnvPtr env = (EnvPtr) new Environment(); OptionDBPtr options; MINOTAUR_AMPL::AMPLInterfacePtr iface = MINOTAUR_AMPL::AMPLInterfacePtr(); ProblemPtr inst; SolutionPtr sol, sol2; double obj_sense =1.0; // jacobian is read from AMPL interface and passed on to branch-and-bound JacobianPtr jPtr; // hessian is read from AMPL interface and passed on to branch-and-bound MINOTAUR_AMPL::AMPLHessianPtr hPtr; // the branch-and-bound BranchAndBound *bab = 0; PresolverPtr pres; EngineFactory *efac; const std::string me("qg: "); BrancherPtr br = BrancherPtr(); // NULL PCBProcessorPtr nproc; NodeIncRelaxerPtr nr; //handlers HandlerVector handlers; IntVarHandlerPtr vHand; LinearHandlerPtr lHand; QGAdvHandlerPtr qgHand; RCHandlerPtr rcHand; //engines EnginePtr nlp_e; EnginePtr proj_nlp_e; EnginePtr l1proj_nlp_e; LPEnginePtr lin_e; // lp engine LoggerPtr logger_ = (LoggerPtr) new Logger(LogInfo); VarVector *orig_v=0; int err = 0; // start timing. env->startTimer(err); if (err) { goto CLEANUP; } setInitialOptions(env); iface = (MINOTAUR_AMPL::AMPLInterfacePtr) new MINOTAUR_AMPL::AMPLInterface(env, "qg"); // parse options env->readOptions(argc, argv); options = env->getOptions(); options->findString("interface_type")->setValue("AMPL"); if (0!=showInfo(env)) { goto CLEANUP; } loadProblem(env, iface, inst, &obj_sense); // Initialize engines nlp_e = getNLPEngine(env, inst); //Engine for Original problem efac = new EngineFactory(env); lin_e = efac->getLPEngine(); // lp engine delete efac; // get presolver. orig_v = new VarVector(inst->varsBegin(), inst->varsEnd()); pres = presolve(env, inst, iface->getNumDefs(), handlers); handlers.clear(); if (Finished != pres->getStatus() && NotStarted != pres->getStatus()) { env->getLogger()->msgStream(LogInfo) << me << "status of presolve: " << getSolveStatusString(pres->getStatus()) << std::endl; writeSol(env, orig_v, pres, SolutionPtr(), pres->getStatus(), iface); writeBnbStatus(env, bab, obj_sense); goto CLEANUP; } if (options->findBool("solve")->getValue()==true) { if (true==options->findBool("use_native_cgraph")->getValue()) { inst->setNativeDer(); } // Initialize the handlers for branch-and-cut lHand = (LinearHandlerPtr) new LinearHandler(env, inst); lHand->setModFlags(false, true); handlers.push_back(lHand); assert(lHand); vHand = (IntVarHandlerPtr) new IntVarHandler(env, inst); vHand->setModFlags(false, true); handlers.push_back(vHand); assert(vHand); // Use of perspective handler is user choice if (env->getOptions()->findBool("perspective")->getValue() == true) { PerspCutHandlerPtr pcHand = (PerspCutHandlerPtr) new PerspCutHandler(env, inst); pcHand->findPRCons(); if (pcHand->getStatus()) { qgHand = (QGAdvHandlerPtr) new QGAdvHandler(env, inst, nlp_e, pcHand); } else { qgHand = (QGAdvHandlerPtr) new QGAdvHandler(env, inst, nlp_e); } } else { qgHand = (QGAdvHandlerPtr) new QGAdvHandler(env, inst, nlp_e); } qgHand->setModFlags(false, true); handlers.push_back(qgHand); assert(qgHand); if (options->findBool("rc_fix")->getValue()) { rcHand = (RCHandlerPtr) new RCHandler(env); rcHand->setModFlags(false, true); handlers.push_back(rcHand); assert(rcHand); } // report name env->getLogger()->msgStream(LogExtraInfo) << me << "handlers used:" << std::endl; for (HandlerIterator h = handlers.begin(); h != handlers.end(); ++h) { env->getLogger()->msgStream(LogExtraInfo) << me << (*h)->getName() << std::endl; } // Only store bound-changes of relaxation (not problem) nr = (NodeIncRelaxerPtr) new NodeIncRelaxer(env, handlers); nr->setModFlag(false); nr->setEngine(lin_e); nproc = (PCBProcessorPtr) new PCBProcessor(env, lin_e, handlers); if (env->getOptions()->findString("brancher")->getValue() == "rel") { ReliabilityBrancherPtr rel_br = (ReliabilityBrancherPtr) new ReliabilityBrancher(env, handlers); rel_br->setEngine(lin_e); nproc->setBrancher(rel_br); br = rel_br; } else if (env->getOptions()->findString("brancher")->getValue() == "maxvio") { MaxVioBrancherPtr mbr = (MaxVioBrancherPtr) new MaxVioBrancher(env, handlers); nproc->setBrancher(mbr); br = mbr; } else if (env->getOptions()->findString("brancher")->getValue() == "lex") { LexicoBrancherPtr lbr = (LexicoBrancherPtr) new LexicoBrancher(env, handlers); br = lbr; } nproc->setBrancher(br); env->getLogger()->msgStream(LogExtraInfo) << me << "brancher used = " << br->getName() << std::endl; bab = new BranchAndBound(env, inst); bab->setNodeRelaxer(nr); bab->setNodeProcessor(nproc); bab->shouldCreateRoot(true); // start solving bab->solve(); bab->writeStats(env->getLogger()->msgStream(LogExtraInfo)); //bab->writeStats(std::cout); nlp_e->writeStats(env->getLogger()->msgStream(LogExtraInfo)); lin_e->writeStats(env->getLogger()->msgStream(LogExtraInfo)); for (HandlerVector::iterator it=handlers.begin(); it!=handlers.end(); ++it) { //(*it)->writeStats(std::cout); (*it)->writeStats(env->getLogger()->msgStream(LogExtraInfo)); } writeSol(env, orig_v, pres, bab->getSolution(), bab->getStatus(), iface); writeBnbStatus(env, bab, obj_sense); } CLEANUP: if (iface) { delete iface; } if (orig_v) { delete orig_v; } if (bab) { delete bab; } return 0; }
//! main routine implementing outer approximation int main(int argc, char** argv) { //! Declaration of Variables ============================================ //! interface to AMPL (NULL): MINOTAUR_AMPL::AMPLInterfacePtr iface = MINOTAUR_AMPL::AMPLInterfacePtr(); MINOTAUR_AMPL::JacobianPtr jPtr; //! Jacobian read from AMPL MINOTAUR_AMPL::HessianOfLagPtr hPtr; //! Hessian read from AMPL //! environment, timers, options: EnvPtr env = (EnvPtr) new Environment(); TimerFactory *tFactory = new TimerFactory(); Timer *timer=tFactory->getTimer(); OptionDBPtr options; //! AMPL and MINOTAUR options //! problem pointers (MINLP, NLP, MILP): ProblemPtr minlp; //! MINLP instance to be solved ProblemPtr milp; //! MILP master problem //! solver pointers, including status FilterSQPEngine e(env); //! NLP engine: FilterSQP EngineStatus status; //! pointers to manipulate variables & constraints VariablePtr v, objVar; //! variable pointer (objective) ObjectivePtr objFun; //! remember objective function pt. //! local variables Double *x, *xsoln; Double *lobnd, *upbnd; Double objfLo = -INFINITY, objfUp = INFINITY, objfNLP, objfMIP; Double tol = 1E-2; Int feasibleNLP = 0, iterOA = 1, n; // ====================================================================== //! start the timer timer->start(); //! make sure solver is used correctly if (argc < 2) { usage(); return -1; } //! add AMPL options & flags to environment: flags (options without values) options = env->getOptions(); add_ampl_flags(options); env->readOptions(argc, argv); //! parse options if (!checkUserOK(options,env)) goto CLEANUP; //! check if user needs help //! read MINLP from AMPL & create Hessian/Jacobian for NLP solves iface = (MINOTAUR_AMPL::AMPLInterfacePtr) new MINOTAUR_AMPL::AMPLInterface(env); minlp = iface->readInstance(options->findString("problem_file")->getValue(),false); jPtr = (MINOTAUR_AMPL::JacobianPtr) new MINOTAUR_AMPL::Jacobian(iface); hPtr = (MINOTAUR_AMPL::HessianOfLagPtr) new MINOTAUR_AMPL::HessianOfLag(iface); minlp->setJacobian(jPtr); minlp->setHessian(hPtr); //! Display number of constraints and variables, and MINLP problem minlp->calculateSize(); n = minlp->getNumVars(); std::cout << "No. of vars, cons = " << minlp->getNumVars() << minlp->getNumCons() << std::endl; std::cout << std::endl << "The MINLP problem is: " << std::endl; minlp->write(std::cout); //! load the MINLP into the NLP solver (FilterSQP) e.load(minlp); //! get initial point & save original bounds x = new Double[n]; xsoln = new Double[n]; lobnd = new Double[n]; upbnd = new Double[n]; std::copy(iface->getInitialPoint(),iface->getInitialPoint()+n,x); for (VariableConstIterator i=minlp->varsBegin(); i!=minlp->varsEnd(); ++i) { v = *i; lobnd[v->getId()] = v->getLb(); upbnd[v->getId()] = v->getUb(); } //! initialize the MILP master problem by copying variables & linear c/s milp = (ProblemPtr) new Problem(); objFun = minlp->getObjective(); objVar = VariablePtr(); initMaster(minlp, milp, objVar, objFun, x); while ((objfLo <= objfUp)&&(iterOA<4)){ std::cout << "Iteration " << iterOA << std::endl << "===============" << std::endl << std::endl; //! set-up and solve NLP(y) with fixed integers solveNLP(minlp, e, x, objfNLP, feasibleNLP, n); std::cout << "Solved NLP " << iterOA << " objective = " << objfNLP << " NLPfeasible = " << feasibleNLP << std::endl; if (feasibleNLP && (objfNLP-tol < objfUp)) { objfUp = objfNLP - tol; std::copy(x,x+n,xsoln); } //! update MILP master problem by adding outer approximations updateMaster(minlp, milp, objVar, objFun, objfUp, x, n); //! solve MILP master problem solveMaster(env, milp, x, &objfMIP, n); objfLo = objfMIP; iterOA = iterOA + 1; } // end while (objfLo <= objfUp) //! output final result & timing std::cout << std::endl << "END outer-approximation: f(x) = " << objfUp << " time used = " << timer->query() << std::endl; CLEANUP: //! free storage delete timer; delete tFactory; if (minlp) { minlp->clear(); delete [] x; delete [] xsoln; delete [] lobnd; delete [] upbnd; } if (milp) { milp->clear(); } return 0; } // end outer approximation main