示例#1
0
文件: exmtool.cpp 项目: jbert/exmap
static int do_procs(SnapshotPtr &snap, char *args[])
{
    list<ProcessPtr> procs;
    list<ProcessPtr>::iterator it;

    procs = snap->procs();
    Sizes::scale_kbytes();
    cout << "PID";
    for (int i = 0; i < Sizes::NUM_SIZES; ++i) {
	cout << "\t" << Sizes::size_name(i);
    }
    cout << "\t" << "CMD";
    cout << "\n";
    
    for (it = procs.begin(); it != procs.end(); ++it) {
	ProcessPtr proc = *it;
	SizesPtr sizes = proc->sizes();
	cout << proc->pid();
	for (int i = 0; i < Sizes::NUM_SIZES; ++i) {
	    cout << "\t" << sizes->sval(i);
	}
	cout << "\t" << proc->cmdline();
	cout << "\n";
    }
    return 0;
}
示例#2
0
DisableResult
Pool::disableProcess(const StaticString &gupid) {
	ScopedLock l(syncher);
	ProcessPtr process = findProcessByGupid(gupid, false);
	if (process != NULL) {
		Group *group = process->getGroup();
		// Must be a boost::shared_ptr to be interruption-safe.
		boost::shared_ptr<DisableWaitTicket> ticket = boost::make_shared<DisableWaitTicket>();
		DisableResult result = group->disable(process,
			boost::bind(syncDisableProcessCallback, _1, _2, ticket));
		group->verifyInvariants();
		group->verifyExpensiveInvariants();
		if (result == DR_DEFERRED) {
			l.unlock();
			ScopedLock l2(ticket->syncher);
			while (!ticket->done) {
				ticket->cond.wait(l2);
			}
			return ticket->result;
		} else {
			return result;
		}
	} else {
		return DR_NOOP;
	}
}
示例#3
0
ProcessPtr
Pool::findOldestIdleProcess(const Group *exclude) const {
	ProcessPtr oldestIdleProcess;

	GroupMap::ConstIterator g_it(groups);
	while (*g_it != NULL) {
		const GroupPtr &group = g_it.getValue();
		if (group.get() == exclude) {
			g_it.next();
			continue;
		}
		const ProcessList &processes = group->enabledProcesses;
		ProcessList::const_iterator p_it, p_end = processes.end();
		for (p_it = processes.begin(); p_it != p_end; p_it++) {
			const ProcessPtr process = *p_it;
			if (process->busyness() == 0
			     && (oldestIdleProcess == NULL
			         || process->lastUsed < oldestIdleProcess->lastUsed)
			) {
				oldestIdleProcess = process;
			}
		}
		g_it.next();
	}

	return oldestIdleProcess;
}
ProcessPtr DatabaseSubsystem::getProcess(int processID)
{
    RWLock::ScopedLock lock(_dbLock);

    ProcessPtr result;
    Session session = getSession();
    session << "SELECT * FROM process WHERE process_id = ?",
               use(processID), into(result), now;
    if (!result.isNull())
        getProcessParams(session, result);
    return result;
}
示例#5
0
文件: Exmap.cpp 项目: jbert/exmap
SizesPtr File::sizes()
{
    if (_procs.empty()) {
	warn << "File::sizes - no processes for file " << name() << "\n";
	SizesPtr null_sizes;
	return null_sizes;
    }
    // std::set doesn't have .front
    ProcessPtr proc = *(_procs.begin());
    // This goes over all procs (because of the _maps), the proc is
    // we're only using the proc to get to the pagepool.
    return Map::sum_sizes(proc->page_pool(), _maps);
}
示例#6
0
文件: Exmap.cpp 项目: jbert/exmap
SizesPtr File::sizes(const RangePtr &elf_range)
{
    SizesPtr null_sizes; // failure return
    stringstream pref;
    pref << "File::sizes " << name() << ": ";

    if (_procs.empty()) {
	warn << pref.str() << "no processes for file\n";
	return null_sizes;
    }

    SizesPtr totals(new Sizes);
    SizesPtr sizes;

    set<ProcessPtr>::iterator proc_it;
    list<MapPtr>::iterator map_it;
    list<MapPtr> maps_for_proc;
    RangePtr subrange, map_elf_range;
    ProcessPtr firstproc = *(_procs.begin()); // set has no ->front()
    PagePoolPtr page_pool = firstproc->page_pool();

    // We need to loop through the procs, because the mapping from
    // ELF virtual address to actual address can be different in each
    for (proc_it = _procs.begin(); proc_it != _procs.end(); ++proc_it) {
	maps_for_proc = Map::intersect_lists((*proc_it)->maps(),
					     _maps);
	if (maps_for_proc.empty()) {
	    warn << pref.str() << "no maps for process "
		<< (*proc_it)->pid() << "\n";
	    return null_sizes;
	}

	for (map_it = maps_for_proc.begin();
	     map_it != maps_for_proc.end();
	     ++map_it) {
	    map_elf_range = (*map_it)->elf_range();
	    if (!map_elf_range) continue;
	    subrange = map_elf_range->intersect(elf_range);
	    if (!subrange) continue;
	    RangePtr mem_range = (*map_it)->elf_to_mem_range(subrange);
	    sizes = (*map_it)->sizes_for_mem_range(page_pool,
						   mem_range);
	    if (sizes) {
		totals->add(sizes);
	    }
	}
    }

    return totals;
}
示例#7
0
bool
Group::shouldInitiateOobw(const ProcessPtr &process) const {
	return process->oobwStatus == Process::OOBW_REQUESTED
		&& process->enabled != Process::DETACHED
		&& process->isAlive()
		&& oobwAllowed();
}
示例#8
0
bool ExeExcuter::run(
    const OJString & exeFile,
    const OJString & inputFile,
    const OJString & outputFile,
    OJInt32_t limitTime,
    OJInt32_t limitMemory
    )
{
    ProcessPtr wp = ProcessFactory::create(ProcessType::WithUser, inputFile, outputFile);
    wp->create(exeFile, limitTime, limitMemory);
    result_ = wp->getExitCodeEx();

    runTime_ = wp->getRunTime();
    runMemory_ = wp->getRunMemory();

    return isAccept();
}
ProcessPtr DatabaseSubsystem::getProcess(ClassificationObjectPtr clo)
{
    RWLock::ScopedLock lock(_dbLock);

    ProcessPtr result;
    Session session = getSession();
    session << "SELECT * FROM process INNER JOIN data_descriptor ON"
               " data_descriptor.process_id = process.process_id WHERE"
               " data_descriptor.descr_id IN "
               "  (SELECT descr_id FROM classification_object_data WHERE"
               "   object_id = ?)"
               "LIMIT 1",
            use(clo->objectID), into(result), now;
    if (!result.isNull())
        getProcessParams(session, result);
    return result;
}
示例#10
0
/**
 * Calls Group::detach() so be sure to fix up the invariants afterwards.
 * See the comments for Group::detach() and the code for detachProcessUnlocked().
 */
ProcessPtr
Pool::forceFreeCapacity(const Group *exclude,
	boost::container::vector<Callback> &postLockActions)
{
	ProcessPtr process = findOldestIdleProcess(exclude);
	if (process != NULL) {
		P_DEBUG("Forcefully detaching process " << process->inspect() <<
			" in order to free capacity in the pool");

		Group *group = process->getGroup();
		assert(group != NULL);
		assert(group->getWaitlist.empty());

		group->detach(process, postLockActions);
	}
	return process;
}
示例#11
0
// ProcessManager::tick
//  - run through the list of processes and update them
//
void ProcessManager::tick(uint64_t deltaMilliseconds)
{
	ProcessPtr next;
    ProcessList::iterator i = m_processList.begin();

    for (; i != m_processList.end(); i++)
	{
		ProcessPtr p = ProcessPtr(*i);

		if ( p->isDead() )
		{
			// Check for a child process and add if exists
			next = p->getNext();
			if ( next )
			{
				p->setNext(ProcessPtr((Process *)NULL));
				attach( next );
			}
			detach( p );
		}
		else if ( p->isActive() && !p->isPaused() )
		{
			p->update(deltaMilliseconds);
		}
	}
}
示例#12
0
void
Group::requestOOBW(const ProcessPtr &process) {
	// Standard resource management boilerplate stuff...
	PoolPtr pool = getPool();
	boost::unique_lock<boost::mutex> lock(pool->syncher);
	if (isAlive() && process->isAlive() && process->oobwStatus == Process::OOBW_NOT_ACTIVE) {
		process->oobwStatus = Process::OOBW_REQUESTED;
	}
}
示例#13
0
void
Group::initiateOobw(const ProcessPtr &process) {
	assert(process->oobwStatus == Process::OOBW_REQUESTED);

	process->oobwStatus = Process::OOBW_IN_PROGRESS;

	if (process->enabled == Process::ENABLED
	 || process->enabled == Process::DISABLING)
	{
		// We want the process to be disabled. However, disabling a process is potentially
		// asynchronous, so we pass a callback which will re-aquire the lock and call this
		// method again.
		P_DEBUG("Disabling process " << process->inspect() << " in preparation for OOBW");
		DisableResult result = disable(process,
			boost::bind(&Group::lockAndMaybeInitiateOobw, this,
				_1, _2, shared_from_this()));
		switch (result) {
		case DR_SUCCESS:
			// Continue code flow.
			break;
		case DR_DEFERRED:
			// lockAndMaybeInitiateOobw() will eventually be called.
			return;
		case DR_ERROR:
		case DR_NOOP:
			P_DEBUG("Out-of-band work for process " << process->inspect() << " aborted "
				"because the process could not be disabled");
			process->oobwStatus = Process::OOBW_NOT_ACTIVE;
			return;
		default:
			P_BUG("Unexpected disable() result " << result);
		}
	}
	
	assert(process->enabled == Process::DISABLED);
	assert(process->sessions == 0);
	
	P_DEBUG("Initiating OOBW request for process " << process->inspect());
	interruptableThreads.create_thread(
		boost::bind(&Group::spawnThreadOOBWRequest, this, shared_from_this(), process),
		"OOBW request thread for process " + process->inspect(),
		POOL_HELPER_THREAD_STACK_SIZE);
}
示例#14
0
void JavaExcuter::run(
    const OJString & exeFile,
    const OJString & inputFile,
    const OJString & outputFile,
    OJInt32_t limitTime,
    OJInt32_t limitMemory
    )
{
    OJString exePath = FileTool::GetFilePath(exeFile);
    OJString exeFileName = FileTool::GetFileName(exeFile);//get only name

    OJString cmdBuffer;
    FormatString(cmdBuffer, OJStr("java -cp %s %s"), exePath.c_str(), exeFileName.c_str());

    ProcessPtr wp = ProcessFactory::create(ProcessType::Excuter, inputFile, outputFile);
    wp->create(cmdBuffer, limitTime*30, limitMemory*10);
    result_ = wp->getResult();
    runTime_ = wp->getRunTime();
    runMemory_ = wp->getRunMemory();
}
示例#15
0
void
Group::onSessionInitiateFailure(const ProcessPtr &process, Session *session) {
	vector<Callback> actions;

	TRACE_POINT();
	// Standard resource management boilerplate stuff...
	PoolPtr pool = getPool();
	boost::unique_lock<boost::mutex> lock(pool->syncher);
	assert(process->isAlive());
	assert(isAlive() || getLifeStatus() == SHUTTING_DOWN);

	UPDATE_TRACE_POINT();
	P_DEBUG("Could not initiate a session with process " <<
		process->inspect() << ", detaching from pool if possible");
	if (!pool->detachProcessUnlocked(process, actions)) {
		P_DEBUG("Process was already detached");
	}
	pool->fullVerifyInvariants();
	lock.unlock();
	runAllActions(actions);
}
示例#16
0
// The 'self' parameter is for keeping the current Group object alive
void
Group::lockAndMaybeInitiateOobw(const ProcessPtr &process, DisableResult result, GroupPtr self) {
	TRACE_POINT();
	
	// Standard resource management boilerplate stuff...
	PoolPtr pool = getPool();
	boost::unique_lock<boost::mutex> lock(pool->syncher);
	if (OXT_UNLIKELY(!process->isAlive() || !isAlive())) {
		return;
	}

	assert(process->oobwStatus == Process::OOBW_IN_PROGRESS);

	if (result == DR_SUCCESS) {
		if (process->enabled == Process::DISABLED) {
			P_DEBUG("Process " << process->inspect() << " disabled; proceeding " <<
				"with out-of-band work");
			process->oobwStatus = Process::OOBW_REQUESTED;
			if (shouldInitiateOobw(process)) {
				initiateOobw(process);
			} else {
				// We do not re-enable the process because it's likely that the
				// administrator has explicitly changed the state.
				P_DEBUG("Out-of-band work for process " << process->inspect() << " aborted "
					"because the process no longer requests out-of-band work");
				process->oobwStatus = Process::OOBW_NOT_ACTIVE;
			}
		} else {
			// We do not re-enable the process because it's likely that the
			// administrator has explicitly changed the state.
			P_DEBUG("Out-of-band work for process " << process->inspect() << " aborted "
				"because the process was reenabled after disabling");
			process->oobwStatus = Process::OOBW_NOT_ACTIVE;
		}
	} else {
		P_DEBUG("Out-of-band work for process " << process->inspect() << " aborted "
			"because the process could not be disabled");
		process->oobwStatus = Process::OOBW_NOT_ACTIVE;
	}
}
示例#17
0
bool
Pool::detachProcessUnlocked(const ProcessPtr &process,
	boost::container::vector<Callback> &postLockActions)
{
	if (OXT_LIKELY(process->isAlive())) {
		verifyInvariants();

		Group *group = process->getGroup();
		group->detach(process, postLockActions);
		// 'process' may now be a stale pointer so don't use it anymore.
		assignSessionsToGetWaiters(postLockActions);
		possiblySpawnMoreProcessesForExistingGroups();

		group->verifyInvariants();
		verifyInvariants();
		verifyExpensiveInvariants();

		return true;
	} else {
		return false;
	}
}
示例#18
0
void FTTask::setProcessParameters(ProcessPtr process) const
{
    process->setWindowFunction(_windowFunction);
    process->setOverlap(_overlap);
    process->setWindowSize(_windowSize);
    process->parameters["transformCount"] = 
        Poco::NumberFormatter::format(_transforms.size());
    int trIndex = 1;
    for (vector<MatrixTransform*>::const_iterator it = _transforms.begin();
         it != _transforms.end(); ++it, ++trIndex)
    {
        string paramName = "transform" + Poco::NumberFormatter::format(trIndex);
        process->parameters[paramName] = (*it)->name();
        MatrixTransform::TransformParameters tp = (*it)->getParameters();
        for (MatrixTransform::TransformParameters::const_iterator 
             pit = tp.begin(); pit != tp.end(); ++pit)
        {
            string tparamName = paramName + pit->first;
            process->parameters[tparamName] = pit->second;
        }
    }
}
示例#19
0
bool
Pool::detachProcess(const string &gupid, const AuthenticationOptions &options) {
	ScopedLock l(syncher);
	ProcessPtr process = findProcessByGupid(gupid, false);
	if (process != NULL) {
		const Group *group = process->getGroup();
		if (group->authorizeByUid(options.uid)
		 || group->authorizeByApiKey(options.apiKey))
		{
			boost::container::vector<Callback> actions;
			bool result = detachProcessUnlocked(process, actions);
			fullVerifyInvariants();
			l.unlock();
			runAllActions(actions);
			return result;
		} else {
			throw SecurityException("Operation unauthorized");
		}
	} else {
		return false;
	}
}
示例#20
0
// The 'self' parameter is for keeping the current Group object alive while this thread is running.
void
Group::spawnThreadOOBWRequest(GroupPtr self, ProcessPtr process) {
	TRACE_POINT();
	this_thread::disable_interruption di;
	this_thread::disable_syscall_interruption dsi;

	Socket *socket;
	Connection connection;
	PoolPtr pool = getPool();
	Pool::DebugSupportPtr debug = pool->debugSupport;

	UPDATE_TRACE_POINT();
	P_DEBUG("Performing OOBW request for process " << process->inspect());
	if (debug != NULL && debug->oobw) {
		debug->debugger->send("OOBW request about to start");
		debug->messages->recv("Proceed with OOBW request");
	}
	
	UPDATE_TRACE_POINT();
	{
		// Standard resource management boilerplate stuff...
		boost::unique_lock<boost::mutex> lock(pool->syncher);
		if (OXT_UNLIKELY(!process->isAlive()
			|| process->enabled == Process::DETACHED
			|| !isAlive()))
		{
			return;
		}

		if (process->enabled != Process::DISABLED) {
			UPDATE_TRACE_POINT();
			P_INFO("Out-of-Band Work canceled: process " << process->inspect() <<
				" was concurrently re-enabled.");
			if (debug != NULL && debug->oobw) {
				debug->debugger->send("OOBW request canceled");
			}
			return;
		}
		
		assert(process->oobwStatus == Process::OOBW_IN_PROGRESS);
		assert(process->sessions == 0);
		socket = process->sessionSockets.top();
		assert(socket != NULL);
	}
	
	UPDATE_TRACE_POINT();
	unsigned long long timeout = 1000 * 1000 * 60; // 1 min
	try {
		this_thread::restore_interruption ri(di);
		this_thread::restore_syscall_interruption rsi(dsi);

		// Grab a connection. The connection is marked as fail in order to
		// ensure it is closed / recycled after this request (otherwise we'd
		// need to completely read the response).
		connection = socket->checkoutConnection();
		connection.fail = true;
		ScopeGuard guard(boost::bind(&Socket::checkinConnection, socket, connection));
		
		// This is copied from RequestHandler when it is sending data using the
		// "session" protocol.
		char sizeField[sizeof(uint32_t)];
		SmallVector<StaticString, 10> data;

		data.push_back(StaticString(sizeField, sizeof(uint32_t)));
		data.push_back(makeStaticStringWithNull("REQUEST_METHOD"));
		data.push_back(makeStaticStringWithNull("OOBW"));

		data.push_back(makeStaticStringWithNull("PASSENGER_CONNECT_PASSWORD"));
		data.push_back(makeStaticStringWithNull(process->connectPassword));

		uint32_t dataSize = 0;
		for (unsigned int i = 1; i < data.size(); i++) {
			dataSize += (uint32_t) data[i].size();
		}
		Uint32Message::generate(sizeField, dataSize);

		gatheredWrite(connection.fd, &data[0], data.size(), &timeout);

		// We do not care what the actual response is ... just wait for it.
		UPDATE_TRACE_POINT();
		waitUntilReadable(connection.fd, &timeout);
	} catch (const SystemException &e) {
		P_ERROR("*** ERROR: " << e.what() << "\n" << e.backtrace());
	} catch (const TimeoutException &e) {
		P_ERROR("*** ERROR: " << e.what() << "\n" << e.backtrace());
	}
	
	UPDATE_TRACE_POINT();
	vector<Callback> actions;
	{
		// Standard resource management boilerplate stuff...
		PoolPtr pool = getPool();
		boost::unique_lock<boost::mutex> lock(pool->syncher);
		if (OXT_UNLIKELY(!process->isAlive() || !isAlive())) {
			return;
		}
		
		process->oobwStatus = Process::OOBW_NOT_ACTIVE;
		if (process->enabled == Process::DISABLED) {
			enable(process, actions);
			assignSessionsToGetWaiters(actions);
		}

		pool->fullVerifyInvariants();

		initiateNextOobwRequest();
	}
	UPDATE_TRACE_POINT();
	runAllActions(actions);
	actions.clear();

	UPDATE_TRACE_POINT();
	P_DEBUG("Finished OOBW request for process " << process->inspect());
	if (debug != NULL && debug->oobw) {
		debug->debugger->send("OOBW request finished");
	}
}
示例#21
0
void
Group::spawnThreadRealMain(const SpawnerPtr &spawner, const Options &options, unsigned int restartsInitiated) {
	TRACE_POINT();
	this_thread::disable_interruption di;
	this_thread::disable_syscall_interruption dsi;

	PoolPtr pool = getPool();
	Pool::DebugSupportPtr debug = pool->debugSupport;
	
	bool done = false;
	while (!done) {
		bool shouldFail = false;
		if (debug != NULL && debug->spawning) {
			UPDATE_TRACE_POINT();
			this_thread::restore_interruption ri(di);
			this_thread::restore_syscall_interruption rsi(dsi);
			this_thread::interruption_point();
			string iteration;
			{
				LockGuard g(debug->syncher);
				debug->spawnLoopIteration++;
				iteration = toString(debug->spawnLoopIteration);
			}
			P_DEBUG("Begin spawn loop iteration " << iteration);
			debug->debugger->send("Begin spawn loop iteration " +
				iteration);
			
			vector<string> cases;
			cases.push_back("Proceed with spawn loop iteration " + iteration);
			cases.push_back("Fail spawn loop iteration " + iteration);
			MessagePtr message = debug->messages->recvAny(cases);
			shouldFail = message->name == "Fail spawn loop iteration " + iteration;
		}

		ProcessPtr process;
		ExceptionPtr exception;
		try {
			UPDATE_TRACE_POINT();
			this_thread::restore_interruption ri(di);
			this_thread::restore_syscall_interruption rsi(dsi);
			if (shouldFail) {
				throw SpawnException("Simulated failure");
			} else {
				process = spawner->spawn(options);
				process->setGroup(shared_from_this());
			}
		} catch (const thread_interrupted &) {
			break;
		} catch (const tracable_exception &e) {
			exception = copyException(e);
			// Let other (unexpected) exceptions crash the program so
			// gdb can generate a backtrace.
		}

		UPDATE_TRACE_POINT();
		ScopeGuard guard(boost::bind(Process::forceTriggerShutdownAndCleanup, process));
		boost::unique_lock<boost::mutex> lock(pool->syncher);

		if (!isAlive()) {
			if (process != NULL) {
				P_DEBUG("Group is being shut down so dropping process " <<
					process->inspect() << " which we just spawned and exiting spawn loop");
			} else {
				P_DEBUG("The group is being shut down. A process failed "
					"to be spawned anyway, so ignoring this error and exiting "
					"spawn loop");
			}
			// We stop immediately because any previously assumed invariants
			// may have been violated.
			break;
		} else if (restartsInitiated != this->restartsInitiated) {
			if (process != NULL) {
				P_DEBUG("A restart was issued for the group, so dropping process " <<
					process->inspect() << " which we just spawned and exiting spawn loop");
			} else {
				P_DEBUG("A restart was issued for the group. A process failed "
					"to be spawned anyway, so ignoring this error and exiting "
					"spawn loop");
			}
			// We stop immediately because any previously assumed invariants
			// may have been violated.
			break;
		}

		verifyInvariants();
		assert(m_spawning);
		assert(processesBeingSpawned > 0);

		processesBeingSpawned--;
		assert(processesBeingSpawned == 0);

		UPDATE_TRACE_POINT();
		vector<Callback> actions;
		if (process != NULL) {
			AttachResult result = attach(process, actions);
			if (result == AR_OK) {
				guard.clear();
				if (getWaitlist.empty()) {
					pool->assignSessionsToGetWaiters(actions);
				} else {
					assignSessionsToGetWaiters(actions);
				}
				P_DEBUG("New process count = " << enabledCount <<
					", remaining get waiters = " << getWaitlist.size());
			} else {
				done = true;
				P_DEBUG("Unable to attach spawned process " << process->inspect());
				if (result == AR_ANOTHER_GROUP_IS_WAITING_FOR_CAPACITY) {
					pool->possiblySpawnMoreProcessesForExistingGroups();
				}
			}
		} else {
			// TODO: sure this is the best thing? if there are
			// processes currently alive we should just use them.
			P_ERROR("Could not spawn process for group " << name <<
				": " << exception->what() << "\n" <<
				exception->backtrace());
			if (enabledCount == 0) {
				enableAllDisablingProcesses(actions);
			}
			Pool::assignExceptionToGetWaiters(getWaitlist, exception, actions);
			pool->assignSessionsToGetWaiters(actions);
			done = true;
		}

		done = done
			|| (processLowerLimitsSatisfied() && getWaitlist.empty())
			|| processUpperLimitsReached()
			|| pool->atFullCapacity(false);
		m_spawning = !done;
		if (done) {
			P_DEBUG("Spawn loop done");
		} else {
			processesBeingSpawned++;
			P_DEBUG("Continue spawning");
		}

		UPDATE_TRACE_POINT();
		pool->fullVerifyInvariants();
		lock.unlock();
		UPDATE_TRACE_POINT();
		runAllActions(actions);
		UPDATE_TRACE_POINT();
	}

	if (debug != NULL && debug->spawning) {
		debug->debugger->send("Spawn loop done");
	}
}
示例#22
0
// 'lockNow == false' may only be used during unit tests. Normally we
// should never call the callback while holding the lock.
void
Pool::asyncGet(const Options &options, const GetCallback &callback, bool lockNow, UnionStation::StopwatchLog **stopwatchLog) {
	DynamicScopedLock lock(syncher, lockNow);

	assert(lifeStatus == ALIVE || lifeStatus == PREPARED_FOR_SHUTDOWN);
	verifyInvariants();
	P_TRACE(2, "asyncGet(appGroupName=" << options.getAppGroupName() << ")");
	boost::container::vector<Callback> actions;

	Group *existingGroup = findMatchingGroup(options);
	if (stopwatchLog != NULL) {
		// Log some essentials stats about what this request is facing in its upcoming journey through the queue:
		// 1) position in the queue upon entry, and 2) whether spawning activity is occurring (which takes cycles
		// but also indicates the server has headroom to handle the load).
		Json::Value data;
		if (!existingGroup) {
			data["message"] = "spawning.."; // the first of this group, so keep it simple (also: we don't know maxQ yet)
		} else {
			char queueMaxStr[10];
			int queueMax = existingGroup->options.maxRequestQueueSize;
			if (queueMax > 0) {
				snprintf(queueMaxStr, 10, "%d", queueMax);
			}
			char message[50];
			snprintf(message, 100, "queue: %zu / %s, spawning: %s", existingGroup->getWaitlist.size(),
					(queueMax == 0 ? "inf" : queueMaxStr),
					(existingGroup->processesBeingSpawned == 0 ? "no" : "yes"));
			data["message"] = message;
		}
		Json::Value json;
		json["data"] = data;
		json["data_type"] = "generic";
		json["name"] = "Await available process";

		*stopwatchLog = new UnionStation::StopwatchLog(options.transaction, "Pool::asyncGet", stringifyJson(json).c_str());
	}

	if (OXT_LIKELY(existingGroup != NULL)) {
		/* Best case: the app group is already in the pool. Let's use it. */
		P_TRACE(2, "Found existing Group");
		existingGroup->verifyInvariants();
		SessionPtr session = existingGroup->get(options, callback, actions);
		existingGroup->verifyInvariants();
		verifyInvariants();
		P_TRACE(2, "asyncGet() finished");
		if (lockNow) {
			lock.unlock();
		}
		if (session != NULL) {
			callback(session, ExceptionPtr());
		}

	} else if (!atFullCapacityUnlocked()) {
		/* The app super group isn't in the pool and we have enough free
		 * resources to make a new one.
		 */
		P_DEBUG("Spawning new Group");
		GroupPtr group = createGroupAndAsyncGetFromIt(options,
			callback, actions);
		group->verifyInvariants();
		verifyInvariants();
		P_DEBUG("asyncGet() finished");

	} else {
		/* Uh oh, the app super group isn't in the pool but we don't
		 * have the resources to make a new one. The sysadmin should
		 * configure the system to let something like this happen
		 * as least as possible, but let's try to handle it as well
		 * as we can.
		 */
		ProcessPtr freedProcess = forceFreeCapacity(NULL, actions);
		if (freedProcess == NULL) {
			/* No process is eligible for killing. This could happen if, for example,
			 * all (super)groups are currently initializing/restarting/spawning/etc.
			 * We have no choice but to satisfy this get() action later when resources
			 * become available.
			 */
			P_DEBUG("Could not free a process; putting request to top-level getWaitlist");
			getWaitlist.push_back(GetWaiter(
				options.copyAndPersist().detachFromUnionStationTransaction(),
				callback));
		} else {
			/* Now that a process has been trashed we can create
			 * the missing Group.
			 */
			P_DEBUG("Creating new Group");
			GroupPtr group = createGroup(options);
			SessionPtr session = group->get(options, callback,
				actions);
			/* The Group is now spawning a process so the callback
			 * should now have been put on the wait list,
			 * unless something has changed and we forgot to update
			 * some code here or if options.noop...
			 */
			if (session != NULL) {
				assert(options.noop);
				actions.push_back(boost::bind(GetCallback::call,
					callback, session, ExceptionPtr()));
			}
			freedProcess->getGroup()->verifyInvariants();
			group->verifyInvariants();
		}

		assert(atFullCapacityUnlocked());
		verifyInvariants();
		verifyExpensiveInvariants();
		P_TRACE(2, "asyncGet() finished");
	}

	if (!actions.empty()) {
		if (lockNow) {
			if (lock.owns_lock()) {
				lock.unlock();
			}
			runAllActions(actions);
		} else {
			// This state is not allowed. If we reach
			// here then it probably indicates a bug in
			// the test suite.
			abort();
		}
	}
}
示例#23
0
// CProcessManager::Detach 
//  - Detach a process from the process list, but don't delete it
//
void ProcessManager::detach(ProcessPtr process)
{
	m_processList.remove(process);
	process->setAttached(false);
}
示例#24
0
// 'lockNow == false' may only be used during unit tests. Normally we
// should never call the callback while holding the lock.
void
Pool::asyncGet(const Options &options, const GetCallback &callback, bool lockNow) {
	DynamicScopedLock lock(syncher, lockNow);

	assert(lifeStatus == ALIVE || lifeStatus == PREPARED_FOR_SHUTDOWN);
	verifyInvariants();
	P_TRACE(2, "asyncGet(appGroupName=" << options.getAppGroupName() << ")");
	boost::container::vector<Callback> actions;

	Group *existingGroup = findMatchingGroup(options);

	if (OXT_LIKELY(existingGroup != NULL)) {
		/* Best case: the app group is already in the pool. Let's use it. */
		P_TRACE(2, "Found existing Group");
		existingGroup->verifyInvariants();
		SessionPtr session = existingGroup->get(options, callback, actions);
		existingGroup->verifyInvariants();
		verifyInvariants();
		P_TRACE(2, "asyncGet() finished");
		if (lockNow) {
			lock.unlock();
		}
		if (session != NULL) {
			callback(session, ExceptionPtr());
		}

	} else if (!atFullCapacityUnlocked()) {
		/* The app super group isn't in the pool and we have enough free
		 * resources to make a new one.
		 */
		P_DEBUG("Spawning new Group");
		GroupPtr group = createGroupAndAsyncGetFromIt(options,
			callback, actions);
		group->verifyInvariants();
		verifyInvariants();
		P_DEBUG("asyncGet() finished");

	} else {
		/* Uh oh, the app super group isn't in the pool but we don't
		 * have the resources to make a new one. The sysadmin should
		 * configure the system to let something like this happen
		 * as least as possible, but let's try to handle it as well
		 * as we can.
		 */
		ProcessPtr freedProcess = forceFreeCapacity(NULL, actions);
		if (freedProcess == NULL) {
			/* No process is eligible for killing. This could happen if, for example,
			 * all (super)groups are currently initializing/restarting/spawning/etc.
			 * We have no choice but to satisfy this get() action later when resources
			 * become available.
			 */
			P_DEBUG("Could not free a process; putting request to top-level getWaitlist");
			getWaitlist.push_back(GetWaiter(
				options.copyAndPersist(),
				callback));
		} else {
			/* Now that a process has been trashed we can create
			 * the missing Group.
			 */
			P_DEBUG("Creating new Group");
			GroupPtr group = createGroup(options);
			SessionPtr session = group->get(options, callback,
				actions);
			/* The Group is now spawning a process so the callback
			 * should now have been put on the wait list,
			 * unless something has changed and we forgot to update
			 * some code here or if options.noop...
			 */
			if (session != NULL) {
				assert(options.noop);
				actions.push_back(boost::bind(GetCallback::call,
					callback, session, ExceptionPtr()));
			}
			freedProcess->getGroup()->verifyInvariants();
			group->verifyInvariants();
		}

		assert(atFullCapacityUnlocked());
		verifyInvariants();
		verifyExpensiveInvariants();
		P_TRACE(2, "asyncGet() finished");
	}

	if (!actions.empty()) {
		if (lockNow) {
			if (lock.owns_lock()) {
				lock.unlock();
			}
			runAllActions(actions);
		} else {
			// This state is not allowed. If we reach
			// here then it probably indicates a bug in
			// the test suite.
			abort();
		}
	}
}
示例#25
0
bool ExmapTest::run()
{
    SysInfoPtr sysinfo(new LinuxSysInfo);
    Snapshot snap(sysinfo);

    is(snap.num_procs(), 0, "zero procs before load");
    ok(snap.load(), "can load snapshot");
    ok(snap.num_procs() > 0, "some procs after load");

    list<ProcessPtr> allprocs = snap.procs();
    ok(!allprocs.empty(), "can get a list of procs");
    list<ProcessPtr>::iterator proc_it;
    list<ProcessPtr> procs;

    bool failed_to_get_sizes = false;
    SizesPtr sizes;
    for (proc_it = allprocs.begin(); proc_it != allprocs.end(); ++proc_it) {
	string cmdline = (*proc_it)->cmdline();
	if (cmdline== SA_EXE) {
	    procs.push_back(*proc_it);
	}
	sizes = (*proc_it)->sizes();
	if (!sizes) {
	    failed_to_get_sizes = true;
	}
    }
    ok(!failed_to_get_sizes, "can get sizes for every proc");

    is((int) procs.size(), NUM_INSTANCES, "can find all our sharedarray procs");

    ProcessPtr proc = procs.front();
    sizes = proc->sizes();
    ok(sizes->val(Sizes::VM) > NUM_ARRAYS * ARRAY_SIZE, "image is big enough");

    double ps_size = get_pid_size_from_ps(proc->pid());
    is_approx_rel(sizes->val(Sizes::VM),
		  ps_size,
		  0.001,
		  "exmap info matches ps output");

    ok(sizes->val(Sizes::RESIDENT) > 0, "nonzero resident size");
    ok(sizes->val(Sizes::EFFECTIVE_RESIDENT) > 0, "nonzero eff resident size");
    ok(sizes->val(Sizes::EFFECTIVE_RESIDENT) < sizes->val(Sizes::RESIDENT),
       "effective is smaller than eff resident");

    ok(sizes->val(Sizes::MAPPED) > 0, "nonzero mapped size");
    ok(sizes->val(Sizes::EFFECTIVE_MAPPED) > 0, "nonzero eff mapped size");
    ok(sizes->val(Sizes::EFFECTIVE_MAPPED) < sizes->val(Sizes::MAPPED),
       "effective is smaller than eff mapped");

    
    list<FilePtr> files;
    list<FilePtr>::iterator file_it;
    list<FilePtr> all_files = snap.files();
    
    ok(all_files.size() > 0, "can find some files");

    Regexp re;
    re.compile(SA_LIB + "$");
    failed_to_get_sizes = false;
    for (file_it = all_files.begin(); file_it != all_files.end(); ++file_it) {
	string name = (*file_it)->name();
	if (re.matches(name)) {
	    files.push_back(*file_it);
	}
	sizes = (*file_it)->sizes();
	if (!sizes) {
	    failed_to_get_sizes = true;
	}
    }
    ok(!failed_to_get_sizes, "can get sizes for every file");
    is((int) files.size(), 1, "shared lib only listed once");
    FilePtr shlib_file = files.front();
    ok(shlib_file->is_elf(), "shared lib recognised as elf file");

    list<ProcessPtr> procs_per_file = shlib_file->procs();
    is((int) procs_per_file.size(), NUM_INSTANCES,
       "right number of procs mapping the file");
    for (proc_it = procs_per_file.begin();
	 proc_it != procs_per_file.end();
	 ++proc_it) {
	ok(proc->cmdline() == SA_EXE, "each proc has correct cmdline");
    }

    for (proc_it = procs.begin();
	 proc_it != procs.end();
	 ++proc_it) {
	sizes = proc->sizes(shlib_file);
	long arrays_size = NUM_ARRAYS * ARRAY_SIZE;
	float delta = std::abs(arrays_size - (long) sizes->val(Sizes::VM));
	delta /= arrays_size;
	ok(delta < 0.01, "Shared lib has correct size in each proc");
    }
    
    Elf::SectionPtr text = shlib_file->elf()->section(".text");
    ok(text, "can find text section");
    ok(text->size() > 0, "text section has nonzero size");
    sizes = procs.front()->sizes(shlib_file, text->mem_range());
    /// This appears to be compiler and system dependent...
    /*
    is_approx_rel(sizes->val(Sizes::RESIDENT),
		  2.0 * text->size(),
		  0.001,
		  "lib text is resident and mapped twice (!)");
		  */
    
    Elf::SectionPtr bss = shlib_file->elf()->section(".bss");
    ok(bss, "can find bss section");
    ok(bss->size() > 0, "bss section has nonzero size");
    SizesPtr bss_sizes = procs.front()->sizes(shlib_file, bss->mem_range());
    ok(bss_sizes, "can get sizes for bss section");

    Elf::SectionPtr data = shlib_file->elf()->section(".data");
    ok(data, "can find data section");
    ok(data->size() > 0, "data section has nonzero size");
    SizesPtr data_sizes = procs.front()->sizes(shlib_file, data->mem_range());
    ok(data_sizes, "can get sizes for data section");

    is(data->size(), bss->size(), "data and bss sections have same size");

    is_approx(data_sizes->val(Sizes::MAPPED),
	      bss_sizes->val(Sizes::MAPPED),
	      Elf::page_size(),
	      "data and bss mapped within page of each other");
    
    is_approx(data_sizes->val(Sizes::RESIDENT),
	      bss_sizes->val(Sizes::RESIDENT),
	      Elf::page_size(),
	      "data and bss resident within page of each other");

    // Now get the all-proc sizes from the file
    sizes = shlib_file->sizes(bss->mem_range());
    // The totals should be a multiple of the individual
    is(sizes->val(Sizes::RESIDENT),
	    bss_sizes->val(Sizes::RESIDENT) * NUM_INSTANCES,
	    "Total resident for all procs the same as multiplying up one proc");
    is(sizes->val(Sizes::MAPPED),
	    bss_sizes->val(Sizes::MAPPED) * NUM_INSTANCES,
	    "Total mapped for all procs the same as multiplying up one proc");

    double bss_resident_arrays_size = 0;
    double data_resident_arrays_size = 0;
    double bss_writable_arrays_size = 0;
    double data_writable_arrays_size = 0;
    for (int i = 0; i < NUM_ARRAYS; ++i) {
	if (ARRAY_INFO[i].initialised) {
	    data_resident_arrays_size
		+= ARRAY_SIZE * ARRAY_INFO[i].resident_percent / 100;
	    data_writable_arrays_size
		+= ARRAY_SIZE * ARRAY_INFO[i].writable_percent / 100;
	}
	else {
	    bss_resident_arrays_size
		+= ARRAY_SIZE * ARRAY_INFO[i].resident_percent / 100;
	    bss_writable_arrays_size
		+= ARRAY_SIZE * ARRAY_INFO[i].writable_percent / 100;
	}
    }

    for (proc_it = procs.begin();
	 proc_it != procs.end();
	 ++proc_it) {
	
	sizes = proc->sizes(shlib_file, data->mem_range());
	is_approx(sizes->val(Sizes::RESIDENT),
		  data_resident_arrays_size,
		  Elf::page_size(),
		  "resident size for data in proc correct with a page");
	is_approx(sizes->val(Sizes::WRITABLE),
		  data_writable_arrays_size,
		  Elf::page_size(),
		  "writable size for data in proc correct with a page");
	
	sizes = proc->sizes(shlib_file, bss->mem_range());
	is_approx_rel(sizes->val(Sizes::RESIDENT),
		      bss_resident_arrays_size,
		      0.001,
		      "correct resident size for bss in proc");
	is_approx_rel(sizes->val(Sizes::WRITABLE),
		      bss_writable_arrays_size,
		      0.001,
		      "correct writable size for bss in proc");
    }


    for (int i = 0; i < NUM_ARRAYS; ++i) {
	const struct array_info *info = ARRAY_INFO + i;
	string symname = info->name;
	Elf::SymbolPtr sym = shlib_file->elf()->symbol(symname);
	ok(sym, "can find symbol " + symname);
	is(sym->size(), ARRAY_SIZE, symname + " has correct size");
	
	sizes = proc->sizes(shlib_file, sym->range());
	is_approx_rel((int) sizes->val(Sizes::RESIDENT),
		      ARRAY_SIZE * info->resident_percent / 100,
		      0.001,
		      symname + " has correct resident size");

	is_approx_rel(sizes->val(Sizes::WRITABLE),
		      ARRAY_SIZE * info->writable_percent / 100.0,
		      0.001,
		      symname + " has correct writable size");

	// Uninitialised space which is only read appears to be shared
	// amongst every proc in the system (a 'zero page'?). This is
	// good from a low-memusage point of view, but it means that
	// it is shared among nearly all running procs to varying
	// degrees. So we can't really account for it.
	if (symname == "uninit_readme" || symname == "uninit_readhalf") {
	    continue;
	}

	int expected_eff_resident = ARRAY_SIZE * info->resident_percent / 100;
	if (info->shared) {
	    expected_eff_resident /= NUM_INSTANCES;
	}
	// approximate match since the percentage (fixed pt)
	// arithmetic could put us off by a factor of 1/100 (and does...:-)
	is_approx((int) sizes->val(Sizes::EFFECTIVE_RESIDENT),
		  expected_eff_resident,
		  1 + (expected_eff_resident / 100),
		  symname + " has correct effective size");
    }


    // Non-elf maps

    procs.clear();
    for (proc_it = allprocs.begin(); proc_it != allprocs.end(); ++proc_it) {
	string cmdline = (*proc_it)->cmdline();
	if (cmdline == MI_EXE) {
	    procs.push_back(*proc_it);
	}
    }
    is((int) procs.size(), NUM_INSTANCES, "can find all our mapit procs");
    proc = procs.front();

    files.clear();
    re.compile("/" + MI_DAT + "$");
    for (file_it = all_files.begin(); file_it != all_files.end(); ++file_it) {
	string name = (*file_it)->name();
	if (re.matches(name)) {
	    files.push_back(*file_it);
	}
    }
    is((int) files.size(), 1, MI_DAT + " file only listed once");
    FilePtr mapped_file = files.front();

    ok(!mapped_file->is_elf(), MI_DAT + " isn't an elf file");
    off_t fsize = 0;
    double mi_data_size = 0;
    ok(file_size(MI_DAT, fsize), "can get file size");
    mi_data_size = fsize;
    ok(mi_data_size > 0, "file has nonzero size");
    
    for (proc_it = procs.begin();
	 proc_it != procs.end();
	 ++proc_it) {
	sizes = (*proc_it)->sizes(mapped_file);
	is_approx_rel(sizes->val(Sizes::VM),
		      mi_data_size,
		      0.001,
		      "correct data file size");
	is_approx_rel(sizes->val(Sizes::RESIDENT),
		      mi_data_size,
		      0.001,
		      "whole data file is resident");
	is_approx_rel(sizes->val(Sizes::EFFECTIVE_RESIDENT),
		      mi_data_size / NUM_INSTANCES,
		      0.001,
		      "data file is shared between instances correctly");
    }
    
    return true;
}
示例#26
0
void
Group::onSessionClose(const ProcessPtr &process, Session *session) {
	TRACE_POINT();
	// Standard resource management boilerplate stuff...
	PoolPtr pool = getPool();
	boost::unique_lock<boost::mutex> lock(pool->syncher);
	assert(process->isAlive());
	assert(isAlive() || getLifeStatus() == SHUTTING_DOWN);

	P_TRACE(2, "Session closed for process " << process->inspect());
	verifyInvariants();
	UPDATE_TRACE_POINT();
	
	/* Update statistics. */
	process->sessionClosed(session);
	assert(process->getLifeStatus() == Process::ALIVE);
	assert(process->enabled == Process::ENABLED
		|| process->enabled == Process::DISABLING
		|| process->enabled == Process::DETACHED);
	if (process->enabled == Process::ENABLED) {
		pqueue.decrease(process->pqHandle, process->busyness());
	}

	/* This group now has a process that's guaranteed to be not
	 * totally busy.
	 */
	assert(!process->isTotallyBusy());

	bool detachingBecauseOfMaxRequests = false;
	bool detachingBecauseCapacityNeeded = false;
	bool shouldDetach =
		( detachingBecauseOfMaxRequests = (
			options.maxRequests > 0
			&& process->processed >= options.maxRequests
		)) || (
			detachingBecauseCapacityNeeded = (
				process->sessions == 0
				&& getWaitlist.empty()
				&& (
					!pool->getWaitlist.empty()
					|| anotherGroupIsWaitingForCapacity()
				)
			)
		);
	bool shouldDisable =
		process->enabled == Process::DISABLING
		&& process->sessions == 0
		&& enabledCount > 0;

	if (shouldDetach || shouldDisable) {
		vector<Callback> actions;

		if (shouldDetach) {
			if (detachingBecauseCapacityNeeded) {
				/* Someone might be trying to get() a session for a different
				 * group that couldn't be spawned because of lack of pool capacity.
				 * If this group isn't under sufficiently load (as apparent by the
				 * checked conditions) then now's a good time to detach
				 * this process or group in order to free capacity.
				 */
				P_DEBUG("Process " << process->inspect() << " is no longer totally "
					"busy; detaching it in order to make room in the pool");
			} else {
				/* This process has processed its maximum number of requests,
				 * so we detach it.
				 */
				P_DEBUG("Process " << process->inspect() <<
					" has reached its maximum number of requests (" <<
					options.maxRequests << "); detaching it");
			}
			pool->detachProcessUnlocked(process, actions);
		} else {
			removeProcessFromList(process, disablingProcesses);
			addProcessToList(process, disabledProcesses);
			removeFromDisableWaitlist(process, DR_SUCCESS, actions);
			maybeInitiateOobw(process);
		}
		
		pool->fullVerifyInvariants();
		lock.unlock();
		runAllActions(actions);

	} else {
		// This could change process->enabled.
		maybeInitiateOobw(process);

		if (!getWaitlist.empty() && process->enabled == Process::ENABLED) {
			/* If there are clients on this group waiting for a process to
			 * become available then call them now.
			 */
			UPDATE_TRACE_POINT();
			// Already calls verifyInvariants().
			assignSessionsToGetWaitersQuickly(lock);
		}
	}
}
示例#27
0
void
Group::setupAttachOrDetachHook(const ProcessPtr process, HookScriptOptions &options) const {
	options.environment.push_back(make_pair("PASSENGER_PROCESS_PID", toString(process->getPid())));
	options.environment.push_back(make_pair("PASSENGER_APP_ROOT", this->options.appRoot));
}
示例#28
0
void
Session::requestOOBW() {
	ProcessPtr process = getProcess();
	assert(process->isAlive());
	process->getGroup()->requestOOBW(process);
}
示例#29
0
void
Group::detachedProcessesCheckerMain(GroupPtr self) {
	TRACE_POINT();
	PoolPtr pool = getPool();

	Pool::DebugSupportPtr debug = pool->debugSupport;
	if (debug != NULL && debug->detachedProcessesChecker) {
		debug->debugger->send("About to start detached processes checker");
		debug->messages->recv("Proceed with starting detached processes checker");
	}

	boost::unique_lock<boost::mutex> lock(pool->syncher);
	while (true) {
		assert(detachedProcessesCheckerActive);

		if (getLifeStatus() == SHUT_DOWN || this_thread::interruption_requested()) {
			UPDATE_TRACE_POINT();
			P_DEBUG("Stopping detached processes checker");
			detachedProcessesCheckerActive = false;
			break;
		}

		UPDATE_TRACE_POINT();
		if (!detachedProcesses.empty()) {
			P_TRACE(2, "Checking whether any of the " << detachedProcesses.size() <<
				" detached processes have exited...");
			ProcessList::iterator it = detachedProcesses.begin();
			ProcessList::iterator end = detachedProcesses.end();
			while (it != end) {
				const ProcessPtr process = *it;
				switch (process->getLifeStatus()) {
				case Process::ALIVE:
					if (process->canTriggerShutdown()) {
						P_DEBUG("Detached process " << process->inspect() <<
							" has 0 active sessions now. Triggering shutdown.");
						process->triggerShutdown();
						assert(process->getLifeStatus() == Process::SHUTDOWN_TRIGGERED);
					}
					it++;
					break;
				case Process::SHUTDOWN_TRIGGERED:
					if (process->canCleanup()) {
						P_DEBUG("Detached process " << process->inspect() << " has shut down. Cleaning up associated resources.");
						process->cleanup();
						assert(process->getLifeStatus() == Process::DEAD);
						it++;
						removeProcessFromList(process, detachedProcesses);
					} else if (process->shutdownTimeoutExpired()) {
						P_WARN("Detached process " << process->inspect() <<
							" didn't shut down within " PROCESS_SHUTDOWN_TIMEOUT_DISPLAY
							". Forcefully killing it with SIGKILL.");
						kill(process->pid, SIGKILL);
						it++;
					} else {
						it++;
					}
					break;
				default:
					P_BUG("Unknown 'lifeStatus' state " << (int) process->getLifeStatus());
				}
			}
		}

		UPDATE_TRACE_POINT();
		if (detachedProcesses.empty()) {
			UPDATE_TRACE_POINT();
			P_DEBUG("Stopping detached processes checker");
			detachedProcessesCheckerActive = false;

			vector<Callback> actions;
			if (shutdownCanFinish()) {
				UPDATE_TRACE_POINT();
				finishShutdown(actions);
			}

			verifyInvariants();
			verifyExpensiveInvariants();
			lock.unlock();
			UPDATE_TRACE_POINT();
			runAllActions(actions);
			break;
		} else {
			UPDATE_TRACE_POINT();
			verifyInvariants();
			verifyExpensiveInvariants();
		}

		// Not all processes can be shut down yet. Sleep for a while unless
		// someone wakes us up.
		UPDATE_TRACE_POINT();
		detachedProcessesCheckerCond.timed_wait(lock,
			posix_time::milliseconds(100));
	}
}
示例#30
0
void WheelAnimalProcessManager::runProcess(WheelAnimalProcess::PROCESS process,Orz::Event * evt)
{
	_referenced = evt->getData<ReferenceCount *>()->reference();
	ProcessPtr pro = _processes.at(process);
	_updateFun = boost::bind(&WheelAnimalProcess::update, pro.get(), _1);
}