LValue ComplexExprEmitter:: EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), RValue &Val) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); QualType LHSTy = E->getLHS()->getType(); BinOpInfo OpInfo; // Load the RHS and LHS operands. // __block variables need to have the rhs evaluated first, plus this should // improve codegen a little. OpInfo.Ty = E->getComputationResultType(); // The RHS should have been converted to the computation type. assert(OpInfo.Ty->isAnyComplexType()); assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); OpInfo.RHS = Visit(E->getRHS()); LValue LHS = CGF.EmitLValue(E->getLHS()); // Load from the l-value and convert it. if (LHSTy->isAnyComplexType()) { ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); } else { llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); } // Expand the binary operator. ComplexPairTy Result = (this->*Func)(OpInfo); // Truncate the result and store it into the LHS lvalue. if (LHSTy->isAnyComplexType()) { ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); Val = RValue::getComplex(ResVal); } else { llvm::Value *ResVal = CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); Val = RValue::get(ResVal); } return LHS; }
void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { QualType type = LV.getType(); // FIXME: Ignore result? // FIXME: Are initializers affected by volatile? if (Dest.isZeroed() && isSimpleZero(E, CGF)) { // Storing "i32 0" to a zero'd memory location is a noop. } else if (isa<ImplicitValueInitExpr>(E)) { EmitNullInitializationToLValue(LV); } else if (type->isReferenceType()) { RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); CGF.EmitStoreThroughLValue(RV, LV); } else if (type->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(type)) { CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, Dest.isZeroed())); } else if (LV.isSimple()) { CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); } else { CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); } }
static void EmitDeclInit(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *DeclPtr) { assert(D.hasGlobalStorage() && "VarDecl must have global storage!"); assert(!D.getType()->isReferenceType() && "Should not call EmitDeclInit on a reference!"); ASTContext &Context = CGF.getContext(); CharUnits alignment = Context.getDeclAlign(&D); QualType type = D.getType(); LValue lv = CGF.MakeAddrLValue(DeclPtr, type, alignment); const Expr *Init = D.getInit(); if (!CGF.hasAggregateLLVMType(type)) { CodeGenModule &CGM = CGF.CGM; if (lv.isObjCStrong()) CGM.getObjCRuntime().EmitObjCGlobalAssign(CGF, CGF.EmitScalarExpr(Init), DeclPtr, D.isThreadSpecified()); else if (lv.isObjCWeak()) CGM.getObjCRuntime().EmitObjCWeakAssign(CGF, CGF.EmitScalarExpr(Init), DeclPtr); else CGF.EmitScalarInit(Init, &D, lv, false); } else if (type->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(Init, DeclPtr, lv.isVolatile()); } else { CGF.EmitAggExpr(Init, AggValueSlot::forLValue(lv,AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased)); } }
static void EmitDeclInit(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *DeclPtr) { assert(D.hasGlobalStorage() && "VarDecl must have global storage!"); assert(!D.getType()->isReferenceType() && "Should not call EmitDeclInit on a reference!"); CodeGenModule &CGM = CGF.CGM; ASTContext &Context = CGF.getContext(); const Expr *Init = D.getInit(); QualType T = D.getType(); bool isVolatile = Context.getCanonicalType(T).isVolatileQualified(); if (!CGF.hasAggregateLLVMType(T)) { llvm::Value *V = CGF.EmitScalarExpr(Init); CGF.EmitStoreOfScalar(V, DeclPtr, isVolatile, T); } else if (T->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(Init, DeclPtr, isVolatile); } else { CGF.EmitAggExpr(Init, DeclPtr, isVolatile); // Avoid generating destructor(s) for initialized objects. if (!isa<CXXConstructExpr>(Init)) return; const ConstantArrayType *Array = Context.getAsConstantArrayType(T); if (Array) T = Context.getBaseElementType(Array); const RecordType *RT = T->getAs<RecordType>(); if (!RT) return; CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); if (RD->hasTrivialDestructor()) return; CXXDestructorDecl *Dtor = RD->getDestructor(Context); llvm::Constant *DtorFn; if (Array) { DtorFn = CodeGenFunction(CGM).GenerateCXXAggrDestructorHelper(Dtor, Array, DeclPtr); const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext()); DeclPtr = llvm::Constant::getNullValue(Int8PtrTy); } else DtorFn = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete); CGF.EmitCXXGlobalDtorRegistration(DtorFn, DeclPtr); } }
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { if (Loc::isLocType(type)) return makeNull(); if (type->isIntegralOrEnumerationType()) return makeIntVal(0, type); if (type->isArrayType() || type->isRecordType() || type->isVectorType() || type->isAnyComplexType()) return makeCompoundVal(type, BasicVals.getEmptySValList()); // FIXME: Handle floats. return UnknownVal(); }
void ExprEngine::VisitInitListExpr(const InitListExpr *IE, ExplodedNode *Pred, ExplodedNodeSet &Dst) { StmtNodeBuilder B(Pred, Dst, *currBldrCtx); ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); QualType T = getContext().getCanonicalType(IE->getType()); unsigned NumInitElements = IE->getNumInits(); if (!IE->isGLValue() && (T->isArrayType() || T->isRecordType() || T->isVectorType() || T->isAnyComplexType())) { llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); // Handle base case where the initializer has no elements. // e.g: static int* myArray[] = {}; if (NumInitElements == 0) { SVal V = svalBuilder.makeCompoundVal(T, vals); B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); return; } for (InitListExpr::const_reverse_iterator it = IE->rbegin(), ei = IE->rend(); it != ei; ++it) { SVal V = state->getSVal(cast<Expr>(*it), LCtx); vals = getBasicVals().prependSVal(V, vals); } B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, svalBuilder.makeCompoundVal(T, vals))); return; } // Handle scalars: int{5} and int{} and GLvalues. // Note, if the InitListExpr is a GLvalue, it means that there is an address // representing it, so it must have a single init element. assert(NumInitElements <= 1); SVal V; if (NumInitElements == 0) V = getSValBuilder().makeZeroVal(T); else V = state->getSVal(IE->getInit(0), LCtx); B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); }
void ExprEngine::VisitInitListExpr(const InitListExpr *IE, ExplodedNode *Pred, ExplodedNodeSet &Dst) { StmtNodeBuilder B(Pred, Dst, *currBldrCtx); ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); QualType T = getContext().getCanonicalType(IE->getType()); unsigned NumInitElements = IE->getNumInits(); if (T->isArrayType() || T->isRecordType() || T->isVectorType() || T->isAnyComplexType()) { llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); // Handle base case where the initializer has no elements. // e.g: static int* myArray[] = {}; if (NumInitElements == 0) { SVal V = svalBuilder.makeCompoundVal(T, vals); B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); return; } for (InitListExpr::const_reverse_iterator it = IE->rbegin(), ei = IE->rend(); it != ei; ++it) { SVal V = state->getSVal(cast<Expr>(*it), LCtx); if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion())) V = UnknownVal(); vals = getBasicVals().consVals(V, vals); } B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, svalBuilder.makeCompoundVal(T, vals))); return; } // Handle scalars: int{5} and int{}. assert(NumInitElements <= 1); SVal V; if (NumInitElements == 0) V = getSValBuilder().makeZeroVal(T); else V = state->getSVal(IE->getInit(0), LCtx); B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); }
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty, bool isVolatile) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); // Aggregate assignment turns into llvm.memcpy. This is almost valid per // C99 6.5.16.1p3, which states "If the value being stored in an object is // read from another object that overlaps in anyway the storage of the first // object, then the overlap shall be exact and the two objects shall have // qualified or unqualified versions of a compatible type." // // memcpy is not defined if the source and destination pointers are exactly // equal, but other compilers do this optimization, and almost every memcpy // implementation handles this case safely. If there is a libc that does not // safely handle this, we can add a target hook. const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext); if (DestPtr->getType() != BP) DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp"); if (SrcPtr->getType() != BP) SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); // Get size and alignment info for this aggregate. std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty); // FIXME: Handle variable sized types. const llvm::Type *IntPtr = llvm::IntegerType::get(VMContext, LLVMPointerWidth); // FIXME: If we have a volatile struct, the optimizer can remove what might // appear to be `extra' memory ops: // // volatile struct { int i; } a, b; // // int main() { // a = b; // a = b; // } // // we need to use a differnt call here. We use isVolatile to indicate when // either the source or the destination is volatile. Builder.CreateCall4(CGM.getMemCpyFn(), DestPtr, SrcPtr, // TypeInfo.first describes size in bits. llvm::ConstantInt::get(IntPtr, TypeInfo.first/8), llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), TypeInfo.second/8)); }
void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, llvm::Value *ReturnValue) { llvm::Value *RV = 0; // Functions with no result always return void. if (ReturnValue) { QualType RetTy = FI.getReturnType(); const ABIArgInfo &RetAI = FI.getReturnInfo(); switch (RetAI.getKind()) { case ABIArgInfo::Indirect: if (RetTy->isAnyComplexType()) { ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); StoreComplexToAddr(RT, CurFn->arg_begin(), false); } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy); } else { EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), false, RetTy); } break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: // The internal return value temp always will have // pointer-to-return-type type. RV = Builder.CreateLoad(ReturnValue); break; case ABIArgInfo::Ignore: break; case ABIArgInfo::Coerce: RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this); break; case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } } if (RV) { Builder.CreateRet(RV); } else { Builder.CreateRetVoid(); } }
void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { // FIXME: Ignore result? // FIXME: Are initializers affected by volatile? if (isa<ImplicitValueInitExpr>(E)) { EmitNullInitializationToLValue(LV, T); } else if (T->isReferenceType()) { RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); CGF.EmitStoreThroughLValue(RV, LV, T); } else if (T->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(T)) { CGF.EmitAnyExpr(E, LV.getAddress(), false); } else { CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, T); } }
void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV, QualType T) { // FIXME: Ignore result? // FIXME: Are initializers affected by volatile? if (Dest.isZeroed() && isSimpleZero(E, CGF)) { // Storing "i32 0" to a zero'd memory location is a noop. } else if (isa<ImplicitValueInitExpr>(E)) { EmitNullInitializationToLValue(LV, T); } else if (T->isReferenceType()) { RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); CGF.EmitStoreThroughLValue(RV, LV, T); } else if (T->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false); } else if (CGF.hasAggregateLLVMType(T)) { CGF.EmitAggExpr(E, AggValueSlot::forAddr(LV.getAddress(), false, true, false, Dest.isZeroed())); } else { CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV, T); } }
static void EmitDeclInit(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *DeclPtr) { assert(D.hasGlobalStorage() && "VarDecl must have global storage!"); assert(!D.getType()->isReferenceType() && "Should not call EmitDeclInit on a reference!"); ASTContext &Context = CGF.getContext(); const Expr *Init = D.getInit(); QualType T = D.getType(); bool isVolatile = Context.getCanonicalType(T).isVolatileQualified(); if (!CGF.hasAggregateLLVMType(T)) { llvm::Value *V = CGF.EmitScalarExpr(Init); CGF.EmitStoreOfScalar(V, DeclPtr, isVolatile, T); } else if (T->isAnyComplexType()) { CGF.EmitComplexExprIntoAddr(Init, DeclPtr, isVolatile); } else { CGF.EmitAggExpr(Init, DeclPtr, isVolatile); } }
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, llvm::Value *NewPtr, llvm::Value *NumElements) { QualType AllocType = E->getAllocatedType(); if (!E->isArray()) { if (CXXConstructorDecl *Ctor = E->getConstructor()) { CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, NewPtr, E->constructor_arg_begin(), E->constructor_arg_end()); return; } // We have a POD type. if (E->getNumConstructorArgs() == 0) return; assert(E->getNumConstructorArgs() == 1 && "Can only have one argument to initializer of POD type."); const Expr *Init = E->getConstructorArg(0); if (!CGF.hasAggregateLLVMType(AllocType)) CGF.Builder.CreateStore(CGF.EmitScalarExpr(Init), NewPtr); else if (AllocType->isAnyComplexType()) CGF.EmitComplexExprIntoAddr(Init, NewPtr, AllocType.isVolatileQualified()); else CGF.EmitAggExpr(Init, NewPtr, AllocType.isVolatileQualified()); return; } if (CXXConstructorDecl *Ctor = E->getConstructor()) CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr); }
bool CodeGenFunction::hasAggregateLLVMType(QualType T) { return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || T->isObjCObjectType(); }
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, QualType Ty, bool isVolatile, unsigned Alignment) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); if (getContext().getLangOptions().CPlusPlus) { if (const RecordType *RT = Ty->getAs<RecordType>()) { CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); assert((Record->hasTrivialCopyConstructor() || Record->hasTrivialCopyAssignment() || Record->hasTrivialMoveConstructor() || Record->hasTrivialMoveAssignment()) && "Trying to aggregate-copy a type without a trivial copy " "constructor or assignment operator"); // Ignore empty classes in C++. if (Record->isEmpty()) return; } } // Aggregate assignment turns into llvm.memcpy. This is almost valid per // C99 6.5.16.1p3, which states "If the value being stored in an object is // read from another object that overlaps in anyway the storage of the first // object, then the overlap shall be exact and the two objects shall have // qualified or unqualified versions of a compatible type." // // memcpy is not defined if the source and destination pointers are exactly // equal, but other compilers do this optimization, and almost every memcpy // implementation handles this case safely. If there is a libc that does not // safely handle this, we can add a target hook. // Get size and alignment info for this aggregate. std::pair<CharUnits, CharUnits> TypeInfo = getContext().getTypeInfoInChars(Ty); if (!Alignment) Alignment = TypeInfo.second.getQuantity(); // FIXME: Handle variable sized types. // FIXME: If we have a volatile struct, the optimizer can remove what might // appear to be `extra' memory ops: // // volatile struct { int i; } a, b; // // int main() { // a = b; // a = b; // } // // we need to use a different call here. We use isVolatile to indicate when // either the source or the destination is volatile. llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); llvm::Type *DBP = llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); DestPtr = Builder.CreateBitCast(DestPtr, DBP); llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); llvm::Type *SBP = llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); // Don't do any of the memmove_collectable tests if GC isn't set. if (CGM.getLangOptions().getGC() == LangOptions::NonGC) { // fall through } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { RecordDecl *Record = RecordTy->getDecl(); if (Record->hasObjectMember()) { CharUnits size = TypeInfo.first; llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, SizeVal); return; } } else if (Ty->isArrayType()) { QualType BaseType = getContext().getBaseElementType(Ty); if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { if (RecordTy->getDecl()->hasObjectMember()) { CharUnits size = TypeInfo.first; llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, SizeVal); return; } } } Builder.CreateMemCpy(DestPtr, SrcPtr, llvm::ConstantInt::get(IntPtrTy, TypeInfo.first.getQuantity()), Alignment, isVolatile); }
LValue ComplexExprEmitter:: EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), RValue &Val) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); QualType LHSTy = E->getLHS()->getType(); if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) LHSTy = AT->getValueType(); BinOpInfo OpInfo; // Load the RHS and LHS operands. // __block variables need to have the rhs evaluated first, plus this should // improve codegen a little. OpInfo.Ty = E->getComputationResultType(); QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); // The RHS should have been converted to the computation type. if (E->getRHS()->getType()->isRealFloatingType()) { assert( CGF.getContext() .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); } else { assert(CGF.getContext() .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); OpInfo.RHS = Visit(E->getRHS()); } LValue LHS = CGF.EmitLValue(E->getLHS()); // Load from the l-value and convert it. if (LHSTy->isAnyComplexType()) { ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, E->getExprLoc()); OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty); } else { llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, E->getExprLoc()); // For floating point real operands we can directly pass the scalar form // to the binary operator emission and potentially get more efficient code. if (LHSTy->isRealFloatingType()) { if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy); OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); } else { OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty); } } // Expand the binary operator. ComplexPairTy Result = (this->*Func)(OpInfo); // Truncate the result and store it into the LHS lvalue. if (LHSTy->isAnyComplexType()) { ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy); EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); Val = RValue::getComplex(ResVal); } else { llvm::Value *ResVal = CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy); CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); Val = RValue::get(ResVal); } return LHS; }
void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) { assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); EmitMemSetToZero(DestPtr, Ty); }
bool CodeGenFunction::hasAggregateLLVMType(QualType T) { return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() || T->isMemberFunctionPointerType(); }
// FIXME: should rewrite according to the cast kind. SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { if (val.isUnknownOrUndef() || castTy == originalTy) return val; // For const casts, just propagate the value. if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) if (Context.hasSameUnqualifiedType(castTy, originalTy)) return val; // Check for casts to real or complex numbers. We don't handle these at all // right now. if (castTy->isFloatingType() || castTy->isAnyComplexType()) return UnknownVal(); // Check for casts from integers to integers. if (castTy->isIntegerType() && originalTy->isIntegerType()) return evalCastNL(cast<NonLoc>(val), castTy); // Check for casts from pointers to integers. if (castTy->isIntegerType() && Loc::IsLocType(originalTy)) return evalCastL(cast<Loc>(val), castTy); // Check for casts from integers to pointers. if (Loc::IsLocType(castTy) && originalTy->isIntegerType()) { if (nonloc::LocAsInteger *LV = dyn_cast<nonloc::LocAsInteger>(&val)) { if (const MemRegion *R = LV->getLoc().getAsRegion()) { StoreManager &storeMgr = StateMgr.getStoreManager(); R = storeMgr.CastRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } return LV->getLoc(); } goto DispatchCast; } // Just pass through function and block pointers. if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { assert(Loc::IsLocType(castTy)); return val; } // Check for casts from array type to another type. if (originalTy->isArrayType()) { // We will always decay to a pointer. val = StateMgr.ArrayToPointer(cast<Loc>(val)); // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (castTy->isPointerType()) return val; // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(castTy->isIntegerType()); // FIXME: Keep these here for now in case we decide soon that we // need the original decayed type. // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); // QualType pointerTy = C.getPointerType(elemTy); return evalCastL(cast<Loc>(val), castTy); } // Check for casts from a region to a specific type. if (const MemRegion *R = val.getAsRegion()) { // FIXME: We should handle the case where we strip off view layers to get // to a desugared type. if (!Loc::IsLocType(castTy)) { // FIXME: There can be gross cases where one casts the result of a function // (that returns a pointer) to some other value that happens to fit // within that pointer value. We currently have no good way to // model such operations. When this happens, the underlying operation // is that the caller is reasoning about bits. Conceptually we are // layering a "view" of a location on top of those bits. Perhaps // we need to be more lazy about mutual possible views, even on an // SVal? This may be necessary for bit-level reasoning as well. return UnknownVal(); } // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } assert(Loc::IsLocType(originalTy) || originalTy->isFunctionType() || originalTy->isBlockPointerType()); StoreManager &storeMgr = StateMgr.getStoreManager(); // Delegate to store manager to get the result of casting a region to a // different type. If the MemRegion* returned is NULL, this expression // Evaluates to UnknownVal. R = storeMgr.CastRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } DispatchCast: // All other cases. return isa<Loc>(val) ? evalCastL(cast<Loc>(val), castTy) : evalCastNL(cast<NonLoc>(val), castTy); }
RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, llvm::Value *Callee, const CallArgList &CallArgs, const Decl *TargetDecl) { // FIXME: We no longer need the types from CallArgs; lift up and simplify. llvm::SmallVector<llvm::Value*, 16> Args; // Handle struct-return functions by passing a pointer to the // location that we would like to return into. QualType RetTy = CallInfo.getReturnType(); const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); // If the call returns a temporary with struct return, create a temporary // alloca to hold the result. if (CGM.ReturnTypeUsesSret(CallInfo)) Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy))); assert(CallInfo.arg_size() == CallArgs.size() && "Mismatch between function signature & arguments."); CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); I != E; ++I, ++info_it) { const ABIArgInfo &ArgInfo = info_it->info; RValue RV = I->first; switch (ArgInfo.getKind()) { case ABIArgInfo::Indirect: if (RV.isScalar() || RV.isComplex()) { // Make a temporary alloca to pass the argument. Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second))); if (RV.isScalar()) EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, I->second); else StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); } else { Args.push_back(RV.getAggregateAddr()); } break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: if (RV.isScalar()) { Args.push_back(RV.getScalarVal()); } else if (RV.isComplex()) { llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second)); Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0); Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1); Args.push_back(Tmp); } else { Args.push_back(Builder.CreateLoad(RV.getAggregateAddr())); } break; case ABIArgInfo::Ignore: break; case ABIArgInfo::Coerce: { // FIXME: Avoid the conversion through memory if possible. llvm::Value *SrcPtr; if (RV.isScalar()) { SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, I->second); } else if (RV.isComplex()) { SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce"); StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); } else SrcPtr = RV.getAggregateAddr(); Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this)); break; } case ABIArgInfo::Expand: ExpandTypeToArgs(I->second, RV, Args); break; } } // If the callee is a bitcast of a function to a varargs pointer to function // type, check to see if we can remove the bitcast. This handles some cases // with unprototyped functions. if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { const llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); const llvm::FunctionType *CurFT = cast<llvm::FunctionType>(CurPT->getElementType()); const llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); if (CE->getOpcode() == llvm::Instruction::BitCast && ActualFT->getReturnType() == CurFT->getReturnType() && ActualFT->getNumParams() == CurFT->getNumParams() && ActualFT->getNumParams() == Args.size()) { bool ArgsMatch = true; for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { ArgsMatch = false; break; } // Strip the cast if we can get away with it. This is a nice cleanup, // but also allows us to inline the function at -O0 if it is marked // always_inline. if (ArgsMatch) Callee = CalleeF; } } llvm::BasicBlock *InvokeDest = getInvokeDest(); unsigned CallingConv; CodeGen::AttributeListType AttributeList; CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), AttributeList.end()); llvm::CallSite CS; if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) { CS = Builder.CreateCall(Callee, Args.data(), Args.data()+Args.size()); } else { llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args.data(), Args.data()+Args.size()); EmitBlock(Cont); } CS.setAttributes(Attrs); CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); // If the call doesn't return, finish the basic block and clear the // insertion point; this allows the rest of IRgen to discard // unreachable code. if (CS.doesNotReturn()) { Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); // FIXME: For now, emit a dummy basic block because expr emitters in // generally are not ready to handle emitting expressions at unreachable // points. EnsureInsertPoint(); // Return a reasonable RValue. return GetUndefRValue(RetTy); } llvm::Instruction *CI = CS.getInstruction(); if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) CI->setName("call"); switch (RetAI.getKind()) { case ABIArgInfo::Indirect: if (RetTy->isAnyComplexType()) return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); if (CodeGenFunction::hasAggregateLLVMType(RetTy)) return RValue::getAggregate(Args[0]); return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy)); case ABIArgInfo::Extend: case ABIArgInfo::Direct: if (RetTy->isAnyComplexType()) { llvm::Value *Real = Builder.CreateExtractValue(CI, 0); llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); return RValue::getComplex(std::make_pair(Real, Imag)); } if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp"); Builder.CreateStore(CI, V); return RValue::getAggregate(V); } return RValue::get(CI); case ABIArgInfo::Ignore: // If we are ignoring an argument that had a result, make sure to // construct the appropriate return value for our caller. return GetUndefRValue(RetTy); case ABIArgInfo::Coerce: { // FIXME: Avoid the conversion through memory if possible. llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce"); CreateCoercedStore(CI, V, *this); if (RetTy->isAnyComplexType()) return RValue::getComplex(LoadComplexFromAddr(V, false)); if (CodeGenFunction::hasAggregateLLVMType(RetTy)) return RValue::getAggregate(V); return RValue::get(EmitLoadOfScalar(V, false, RetTy)); } case ABIArgInfo::Expand: assert(0 && "Invalid ABI kind for return argument"); } assert(0 && "Unhandled ABIArgInfo::Kind"); return RValue::get(0); }