示例#1
0
// helper function to run slerp with 2.0 as t value
Quaternion<double> Interpolator::Double(Quaternion<double> p, Quaternion<double> q)
{
  // students should implement this
  Quaternion<double> result;

  double pDotq = q.Gets()*p.Gets() + q.Getx()*p.Getx() + q.Gety()*p.Gety() + q.Getz()*p.Getz();
  result = (2*pDotq)*q - p;
  
  return result;
}
示例#2
0
// SLERP function for quaternions
Quaternion<double> Interpolator::Slerp(double t, Quaternion<double> & qStart, Quaternion<double> & qEnd_)
{
  // students should implement this
  Quaternion<double> result;
  Quaternion<double> q3;
  double qStartDotqEnd = qStart.Gets()*qEnd_.Gets() + qStart.Getx()*qEnd_.Getx() + qStart.Gety()*qEnd_.Gety() + qStart.Getz()*qEnd_.Getz();
	
  // need to check for the great arc that is the smallest, and change the quaternion accordingly if chosen wrong one
  if (qStartDotqEnd < 0)
  {
	  q3 = -1*qEnd_;
	  qStartDotqEnd = -qStartDotqEnd;
  }
  else
  {
	  q3 = qEnd_;
  }

  // cos(theta) = s1s2 + x1x2 + y1y2 + z1z2
  double theta = acos(qStartDotqEnd);

  if (sin(theta) == 0)
  {
	  return qStart;
  }

  // slerp formula
  result = (sin((1-t)*theta)/sin(theta))*qStart + (sin(t*theta)/sin(theta))*q3;
  result.Normalize();

  return result;
}