// static Status QueryPlanner::planFromCache(const CanonicalQuery& query, const QueryPlannerParams& params, CachedSolution* cachedSoln, QuerySolution** out) { // Create a copy of the expression tree. We use cachedSoln to annotate this with indices. MatchExpression* clone = query.root()->shallowClone(); // XXX: Use data in cachedSoln to tag 'clone' with the indices used. The tags use an index // ID which is an index into some vector of IndexEntry(s). How do we maintain this across // calls to plan? Do we want to store in the soln the keypatterns of the indices and just // map those to an index into params.indices? Might be easiest thing to do, and certainly // most intelligible for debugging. // Use the cached index assignments to build solnRoot. Takes ownership of clone. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(query, clone, false, params.indices); // XXX: are the NULL cases an error/when does this happen / can this happen? if (NULL != solnRoot) { QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { QLOG() << "Planner: adding cached solution:\n" << soln->toString() << endl; *out = soln; } } // XXX: if any NULLs return error status? return Status::OK(); }
void run() { for (int i = 0; i < N; ++i) { insert(BSON("a" << 1)); insert(BSON("a" << 1 << "b" << 1 << "c" << i)); } // Indices on 'a' and 'b'. addIndex(BSON("a" << 1)); addIndex(BSON("b" << 1)); // Solutions using either 'a' or 'b' will take a long time to start producing // results. However, an index scan on 'b' will start producing results sooner // than an index scan on 'a'. CanonicalQuery* cq; ASSERT(CanonicalQuery::canonicalize(ns, fromjson("{a: 1, b: 1, c: {$gte: 5000}}"), &cq).isOK()); ASSERT(NULL != cq); // Use index on 'b'. QuerySolution* soln = pickBestPlan(cq); std::cerr << "PlanRankingWorkPlansLongEnough: soln=" << soln->toString() << std::endl; ASSERT(QueryPlannerTestLib::solutionMatches( "{fetch: {node: {ixscan: {pattern: {b: 1}}}}}", soln->root.get())); }
Status MultiPlanStage::pickBestPlan(PlanYieldPolicy* yieldPolicy) { // Adds the amount of time taken by pickBestPlan() to executionTimeMillis. There's lots of // execution work that happens here, so this is needed for the time accounting to // make sense. ScopedTimer timer(&_commonStats.executionTimeMillis); // Run each plan some number of times. This number is at least as great as // 'internalQueryPlanEvaluationWorks', but may be larger for big collections. size_t numWorks = internalQueryPlanEvaluationWorks; if (NULL != _collection) { // For large collections, the number of works is set to be this // fraction of the collection size. double fraction = internalQueryPlanEvaluationCollFraction; numWorks = std::max(size_t(internalQueryPlanEvaluationWorks), size_t(fraction * _collection->numRecords(_txn))); } // We treat ntoreturn as though it is a limit during plan ranking. // This means that ranking might not be great for sort + batchSize. // But it also means that we don't buffer too much data for sort + limit. // See SERVER-14174 for details. size_t numToReturn = _query->getParsed().getNumToReturn(); // Determine the number of results which we will produce during the plan // ranking phase before stopping. size_t numResults = (size_t)internalQueryPlanEvaluationMaxResults; if (numToReturn > 0) { numResults = std::min(numToReturn, numResults); } // Work the plans, stopping when a plan hits EOF or returns some // fixed number of results. for (size_t ix = 0; ix < numWorks; ++ix) { bool moreToDo = workAllPlans(numResults, yieldPolicy); if (!moreToDo) { break; } } if (_failure) { invariant(WorkingSet::INVALID_ID != _statusMemberId); WorkingSetMember* member = _candidates[0].ws->get(_statusMemberId); return WorkingSetCommon::getMemberStatus(*member); } // After picking best plan, ranking will own plan stats from // candidate solutions (winner and losers). std::auto_ptr<PlanRankingDecision> ranking(new PlanRankingDecision); _bestPlanIdx = PlanRanker::pickBestPlan(_candidates, ranking.get()); verify(_bestPlanIdx >= 0 && _bestPlanIdx < static_cast<int>(_candidates.size())); // Copy candidate order. We will need this to sort candidate stats for explain // after transferring ownership of 'ranking' to plan cache. std::vector<size_t> candidateOrder = ranking->candidateOrder; CandidatePlan& bestCandidate = _candidates[_bestPlanIdx]; std::list<WorkingSetID>& alreadyProduced = bestCandidate.results; QuerySolution* bestSolution = bestCandidate.solution; LOG(5) << "Winning solution:\n" << bestSolution->toString() << endl; LOG(2) << "Winning plan: " << Explain::getPlanSummary(bestCandidate.root); _backupPlanIdx = kNoSuchPlan; if (bestSolution->hasBlockingStage && (0 == alreadyProduced.size())) { LOG(5) << "Winner has blocking stage, looking for backup plan...\n"; for (size_t ix = 0; ix < _candidates.size(); ++ix) { if (!_candidates[ix].solution->hasBlockingStage) { LOG(5) << "Candidate " << ix << " is backup child\n"; _backupPlanIdx = ix; break; } } } // Logging for tied plans. if (ranking->tieForBest && NULL != _collection) { // These arrays having two or more entries is implied by 'tieForBest'. invariant(ranking->scores.size() > 1); invariant(ranking->candidateOrder.size() > 1); size_t winnerIdx = ranking->candidateOrder[0]; size_t runnerUpIdx = ranking->candidateOrder[1]; LOG(1) << "Winning plan tied with runner-up." << " ns: " << _collection->ns() << " " << _query->toStringShort() << " winner score: " << ranking->scores[0] << " winner summary: " << Explain::getPlanSummary(_candidates[winnerIdx].root) << " runner-up score: " << ranking->scores[1] << " runner-up summary: " << Explain::getPlanSummary(_candidates[runnerUpIdx].root); // There could be more than a 2-way tie, so log the stats for the remaining plans // involved in the tie. static const double epsilon = 1e-10; for (size_t i = 2; i < ranking->scores.size(); i++) { if (fabs(ranking->scores[i] - ranking->scores[0]) >= epsilon) { break; } size_t planIdx = ranking->candidateOrder[i]; LOG(1) << "Plan " << i << " involved in multi-way tie." << " ns: " << _collection->ns() << " " << _query->toStringShort() << " score: " << ranking->scores[i] << " summary: " << Explain::getPlanSummary(_candidates[planIdx].root); } } // If the winning plan produced no results during the ranking period (and, therefore, no // plan produced results during the ranking period), then we will not create a plan cache // entry. if (alreadyProduced.empty() && NULL != _collection) { size_t winnerIdx = ranking->candidateOrder[0]; LOG(1) << "Winning plan had zero results. Not caching." << " ns: " << _collection->ns() << " " << _query->toStringShort() << " winner score: " << ranking->scores[0] << " winner summary: " << Explain::getPlanSummary(_candidates[winnerIdx].root); } // Store the choice we just made in the cache. In order to do so, // 1) the query must be of a type that is safe to cache, // 2) two or more plans cannot have tied for the win. Caching in the case of ties can // cause successive queries of the same shape to use a bad index. // 3) Furthermore, the winning plan must have returned at least one result. Plans which // return zero results cannot be reliably ranked. Such query shapes are generally // existence type queries, and a winning plan should get cached once the query finds a // result. if (PlanCache::shouldCacheQuery(*_query) && !ranking->tieForBest && !alreadyProduced.empty()) { // Create list of candidate solutions for the cache with // the best solution at the front. std::vector<QuerySolution*> solutions; // Generate solutions and ranking decisions sorted by score. for (size_t orderingIndex = 0; orderingIndex < candidateOrder.size(); ++orderingIndex) { // index into candidates/ranking size_t ix = candidateOrder[orderingIndex]; solutions.push_back(_candidates[ix].solution); } // Check solution cache data. Do not add to cache if // we have any invalid SolutionCacheData data. // XXX: One known example is 2D queries bool validSolutions = true; for (size_t ix = 0; ix < solutions.size(); ++ix) { if (NULL == solutions[ix]->cacheData.get()) { LOG(5) << "Not caching query because this solution has no cache data: " << solutions[ix]->toString(); validSolutions = false; break; } } if (validSolutions) { _collection->infoCache()->getPlanCache()->add(*_query, solutions, ranking.release()); } } return Status::OK(); }
// static Status QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, std::vector<QuerySolution*>* out) { LOG(5) << "Beginning planning..." << endl << "=============================" << endl << "Options = " << optionString(params.options) << endl << "Canonical query:" << endl << query.toString() << "=============================" << endl; for (size_t i = 0; i < params.indices.size(); ++i) { LOG(5) << "Index " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().isTailable()) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } // The hint or sort can be $natural: 1. If this happens, output a collscan. If both // a $natural hint and a $natural sort are specified, then the direction of the collscan // is determined by the sign of the sort (not the sign of the hint). if (!query.getParsed().getHint().isEmpty() || !query.getParsed().getSort().isEmpty()) { BSONObj hintObj = query.getParsed().getHint(); BSONObj sortObj = query.getParsed().getSort(); BSONElement naturalHint = hintObj.getFieldDotted("$natural"); BSONElement naturalSort = sortObj.getFieldDotted("$natural"); // A hint overrides a $natural sort. This means that we don't force a table // scan if there is a $natural sort with a non-$natural hint. if (!naturalHint.eoo() || (!naturalSort.eoo() && hintObj.isEmpty())) { LOG(5) << "Forcing a table scan due to hinted $natural\n"; // min/max are incompatible with $natural. if (canTableScan && query.getParsed().getMin().isEmpty() && query.getParsed().getMax().isEmpty()) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { LOG(5) << "Predicate over field '" << *it << "'" << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. // If index filters in the query settings were used to override // the allowed indices for planning, we should not use the hinted index // requested in the query. BSONObj hintIndex; if (!params.indexFiltersApplied) { hintIndex = query.getParsed().getHint(); } // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (hintIndex.isEmpty()) { QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } else { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { LOG(5) << "Hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); LOG(5) << "Hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { return Status(ErrorCodes::BadValue, "bad hint"); } } // Deal with the .min() and .max() query options. If either exist we can only use an index // that matches the object inside. if (!query.getParsed().getMin().isEmpty() || !query.getParsed().getMax().isEmpty()) { BSONObj minObj = query.getParsed().getMin(); BSONObj maxObj = query.getParsed().getMax(); // The unfinished siblings of these objects may not be proper index keys because they // may be empty objects or have field names. When an index is picked to use for the // min/max query, these "finished" objects will always be valid index keys for the // index's key pattern. BSONObj finishedMinObj; BSONObj finishedMaxObj; // This is the index into params.indices[...] that we use. size_t idxNo = numeric_limits<size_t>::max(); // If there's an index hinted we need to be able to use it. if (!hintIndex.isEmpty()) { if (!minObj.isEmpty() && !indexCompatibleMaxMin(minObj, hintIndex)) { LOG(5) << "Minobj doesn't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min query"); } if (!maxObj.isEmpty() && !indexCompatibleMaxMin(maxObj, hintIndex)) { LOG(5) << "Maxobj doesn't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with max query"); } const BSONObj& kp = params.indices[hintIndexNumber].keyPattern; finishedMinObj = finishMinObj(kp, minObj, maxObj); finishedMaxObj = finishMaxObj(kp, minObj, maxObj); // The min must be less than the max for the hinted index ordering. if (0 <= finishedMinObj.woCompare(finishedMaxObj, kp, false)) { LOG(5) << "Minobj/Maxobj don't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min/max query"); } idxNo = hintIndexNumber; } else { // No hinted index, look for one that is compatible (has same field names and // ordering thereof). for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; BSONObj toUse = minObj.isEmpty() ? maxObj : minObj; if (indexCompatibleMaxMin(toUse, kp)) { // In order to be fully compatible, the min has to be less than the max // according to the index key pattern ordering. The first step in verifying // this is "finish" the min and max by replacing empty objects and stripping // field names. finishedMinObj = finishMinObj(kp, minObj, maxObj); finishedMaxObj = finishMaxObj(kp, minObj, maxObj); // Now we have the final min and max. This index is only relevant for // the min/max query if min < max. if (0 >= finishedMinObj.woCompare(finishedMaxObj, kp, false)) { // Found a relevant index. idxNo = i; break; } // This index is not relevant; move on to the next. } } } if (idxNo == numeric_limits<size_t>::max()) { LOG(5) << "Can't find relevant index to use for max/min query"; // Can't find an index to use, bail out. return Status(ErrorCodes::BadValue, "unable to find relevant index for max/min query"); } LOG(5) << "Max/min query using index " << params.indices[idxNo].toString() << endl; // Make our scan and output. QuerySolutionNode* solnRoot = QueryPlannerAccess::makeIndexScan( params.indices[idxNo], query, params, finishedMinObj, finishedMaxObj); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } return Status::OK(); } for (size_t i = 0; i < relevantIndices.size(); ++i) { LOG(2) << "Relevant index " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QueryPlannerIXSelect::stripInvalidAssignments(query.root(), relevantIndices); // Unless we have GEO_NEAR, TEXT, or a projection, we may be able to apply an optimization // in which we strip unnecessary index assignments. // // Disallowed with projection because assignment to a non-unique index can allow the plan // to be covered. // // TEXT and GEO_NEAR are special because they require the use of a text/geo index in order // to be evaluated correctly. Stripping these "mandatory assignments" is therefore invalid. if (query.getParsed().getProj().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { QueryPlannerIXSelect::stripUnneededAssignments(query.root(), relevantIndices); } // query.root() is now annotated with RelevantTag(s). LOG(5) << "Rated tree:" << endl << query.root()->toString(); // If there is a GEO_NEAR it must have an index it can use directly. MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { LOG(5) << "Unable to find index for $geoNear query." << endl; // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "unable to find index for $geoNear query"); } LOG(5) << "Rated tree after geonear processing:" << query.root()->toString(); } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); // Exactly one text index required for TEXT. We need to check this explicitly because // the text stage can't be built if no text index exists or there is an ambiguity as to // which one to use. size_t textIndexCount = 0; for (size_t i = 0; i < params.indices.size(); i++) { if (INDEX_TEXT == params.indices[i].type) { textIndexCount++; } } if (textIndexCount != 1) { // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "need exactly one text index for $text query"); } // Error if the text node is tagged with zero indices. if (0 == tag->first.size() && 0 == tag->notFirst.size()) { // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "failed to use text index to satisfy $text query (if text index is " "compound, are equality predicates given for all prefix fields?)"); } // At this point, we know that there is only one text index and that the TEXT node is // assigned to it. invariant(1 == tag->first.size() + tag->notFirst.size()); LOG(5) << "Rated tree after text processing:" << query.root()->toString(); } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumeratorParams enumParams; enumParams.intersect = params.options & QueryPlannerParams::INDEX_INTERSECTION; enumParams.root = query.root(); enumParams.indices = &relevantIndices; PlanEnumerator isp(enumParams); isp.init(); MatchExpression* rawTree; while (isp.getNext(&rawTree) && (out->size() < params.maxIndexedSolutions)) { LOG(5) << "About to build solntree from tagged tree:" << endl << rawTree->toString(); // The tagged tree produced by the plan enumerator is not guaranteed // to be canonically sorted. In order to be compatible with the cached // data, sort the tagged tree according to CanonicalQuery ordering. std::unique_ptr<MatchExpression> clone(rawTree->shallowClone()); CanonicalQuery::sortTree(clone.get()); PlanCacheIndexTree* cacheData; Status indexTreeStatus = cacheDataFromTaggedTree(clone.get(), relevantIndices, &cacheData); if (!indexTreeStatus.isOK()) { LOG(5) << "Query is not cachable: " << indexTreeStatus.reason() << endl; } unique_ptr<PlanCacheIndexTree> autoData(cacheData); // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess( query, rawTree, false, relevantIndices, params); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { LOG(5) << "Planner: adding solution:" << endl << soln->toString(); if (indexTreeStatus.isOK()) { SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(autoData.release()); soln->cacheData.reset(scd); } out->push_back(soln); } } } // Don't leave tags on query tree. query.root()->resetTag(); LOG(5) << "Planner: outputted " << out->size() << " indexed solutions.\n"; // Produce legible error message for failed OR planning with a TEXT child. // TODO: support collection scan for non-TEXT children of OR. if (out->size() == 0 && textNode != NULL && MatchExpression::OR == query.root()->matchType()) { MatchExpression* root = query.root(); for (size_t i = 0; i < root->numChildren(); ++i) { if (textNode == root->getChild(i)) { return Status(ErrorCodes::BadValue, "Failed to produce a solution for TEXT under OR - " "other non-TEXT clauses under OR have to be indexed as well."); } } } // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty()) { if (0 == out->size()) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); verify(NULL != soln); LOG(5) << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return Status::OK(); } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. // This is implied by the presence of a non-blocking solution. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasBlockingStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const IndexEntry& index = params.indices[i]; // Only regular (non-plugin) indexes can be used to provide a sort, and only // non-sparse indexes can be used to provide a sort. // // TODO: Sparse indexes can't normally provide a sort, because non-indexed // documents could potentially be missing from the result set. However, if the // query predicate can be used to guarantee that all documents to be returned // are indexed, then the index should be able to provide the sort. // // For example: // - Sparse index {a: 1, b: 1} should be able to provide a sort for // find({b: 1}).sort({a: 1}). SERVER-13908. // - Index {a: 1, b: "2dsphere"} (which is "geo-sparse", if // 2dsphereIndexVersion=2) should be able to provide a sort for // find({b: GEO}).sort({a:1}). SERVER-10801. if (index.type != INDEX_BTREE) { continue; } if (index.sparse) { continue; } // Partial indexes can only be used to provide a sort only if the query predicate is // compatible. if (index.filterExpr && !expression::isSubsetOf(query.root(), index.filterExpr)) { continue; } const BSONObj kp = QueryPlannerAnalysis::getSortPattern(index.keyPattern); if (providesSort(query, kp)) { LOG(5) << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { PlanCacheIndexTree* indexTree = new PlanCacheIndexTree(); indexTree->setIndexEntry(params.indices[i]); SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(indexTree); scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN; scd->wholeIXSolnDir = 1; soln->cacheData.reset(scd); out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { LOG(5) << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { PlanCacheIndexTree* indexTree = new PlanCacheIndexTree(); indexTree->setIndexEntry(params.indices[i]); SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(indexTree); scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN; scd->wholeIXSolnDir = -1; soln->cacheData.reset(scd); out->push_back(soln); break; } } } } } // geoNear and text queries *require* an index. // Also, if a hint is specified it indicates that we MUST use it. bool possibleToCollscan = !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && hintIndex.isEmpty(); // The caller can explicitly ask for a collscan. bool collscanRequested = (params.options & QueryPlannerParams::INCLUDE_COLLSCAN); // No indexed plans? We must provide a collscan if possible or else we can't run the query. bool collscanNeeded = (0 == out->size() && canTableScan); if (possibleToCollscan && (collscanRequested || collscanNeeded)) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { SolutionCacheData* scd = new SolutionCacheData(); scd->solnType = SolutionCacheData::COLLSCAN_SOLN; collscan->cacheData.reset(scd); out->push_back(collscan); LOG(5) << "Planner: outputting a collscan:" << endl << collscan->toString(); } } return Status::OK(); }
// static Status QueryPlanner::planFromCache(const CanonicalQuery& query, const QueryPlannerParams& params, const CachedSolution& cachedSoln, QuerySolution** out) { invariant(!cachedSoln.plannerData.empty()); invariant(out); // A query not suitable for caching should not have made its way into the cache. invariant(PlanCache::shouldCacheQuery(query)); // Look up winning solution in cached solution's array. const SolutionCacheData& winnerCacheData = *cachedSoln.plannerData[0]; if (SolutionCacheData::WHOLE_IXSCAN_SOLN == winnerCacheData.solnType) { // The solution can be constructed by a scan over the entire index. QuerySolution* soln = buildWholeIXSoln( *winnerCacheData.tree->entry, query, params, winnerCacheData.wholeIXSolnDir); if (soln == NULL) { return Status(ErrorCodes::BadValue, "plan cache error: soln that uses index to provide sort"); } else { *out = soln; return Status::OK(); } } else if (SolutionCacheData::COLLSCAN_SOLN == winnerCacheData.solnType) { // The cached solution is a collection scan. We don't cache collscans // with tailable==true, hence the false below. QuerySolution* soln = buildCollscanSoln(query, false, params); if (soln == NULL) { return Status(ErrorCodes::BadValue, "plan cache error: collection scan soln"); } else { *out = soln; return Status::OK(); } } // SolutionCacheData::USE_TAGS_SOLN == cacheData->solnType // If we're here then this is neither the whole index scan or collection scan // cases, and we proceed by using the PlanCacheIndexTree to tag the query tree. // Create a copy of the expression tree. We use cachedSoln to annotate this with indices. unique_ptr<MatchExpression> clone = std::move(query.root()->shallowClone()); LOG(5) << "Tagging the match expression according to cache data: " << endl << "Filter:" << endl << clone->toString() << "Cache data:" << endl << winnerCacheData.toString(); // Map from index name to index number. // TODO: can we assume that the index numbering has the same lifetime // as the cache state? map<BSONObj, size_t> indexMap; for (size_t i = 0; i < params.indices.size(); ++i) { const IndexEntry& ie = params.indices[i]; indexMap[ie.keyPattern] = i; LOG(5) << "Index " << i << ": " << ie.keyPattern.toString() << endl; } Status s = tagAccordingToCache(clone.get(), winnerCacheData.tree.get(), indexMap); if (!s.isOK()) { return s; } // The planner requires a defined sort order. sortUsingTags(clone.get()); LOG(5) << "Tagged tree:" << endl << clone->toString(); // Use the cached index assignments to build solnRoot. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess( query, clone.release(), false, params.indices, params); if (!solnRoot) { return Status(ErrorCodes::BadValue, str::stream() << "Failed to create data access plan from cache. Query: " << query.toStringShort()); } // Takes ownership of 'solnRoot'. QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (!soln) { return Status(ErrorCodes::BadValue, str::stream() << "Failed to analyze plan from cache. Query: " << query.toStringShort()); } LOG(5) << "Planner: solution constructed from the cache:\n" << soln->toString(); *out = soln; return Status::OK(); }
// static void QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, vector<QuerySolution*>* out) { QLOG() << "=============================\n" << "Beginning planning, options = " << optionString(params.options) << endl << "Canonical query:\n" << query.toString() << endl << "=============================" << endl; // The shortcut formerly known as IDHACK. See if it's a simple _id query. If so we might // just make an ixscan over the _id index and bypass the rest of planning entirely. if (!query.getParsed().isExplain() && !query.getParsed().showDiskLoc() && isSimpleIdQuery(query.getParsed().getFilter()) && !query.getParsed().hasOption(QueryOption_CursorTailable)) { // See if we can find an _id index. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { const IndexEntry& index = params.indices[i]; QLOG() << "IDHACK using index " << index.toString() << endl; // If so, we make a simple scan to find the doc. IndexScanNode* isn = new IndexScanNode(); isn->indexKeyPattern = index.keyPattern; isn->indexIsMultiKey = index.multikey; isn->direction = 1; isn->bounds.isSimpleRange = true; BSONObj key = getKeyFromQuery(index.keyPattern, query.getParsed().getFilter()); isn->bounds.startKey = isn->bounds.endKey = key; isn->bounds.endKeyInclusive = true; isn->computeProperties(); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, isn); if (NULL != soln) { out->push_back(soln); QLOG() << "IDHACK solution is:\n" << (*out)[0]->toString() << endl; // And that's it. return; } } } } for (size_t i = 0; i < params.indices.size(); ++i) { QLOG() << "idx " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().hasOption(QueryOption_CursorTailable)) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return; } // The hint can be $natural: 1. If this happens, output a collscan. It's a weird way of // saying "table scan for two, please." if (!query.getParsed().getHint().isEmpty()) { BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural"); if (!natural.eoo()) { QLOG() << "forcing a table scan due to hinted $natural\n"; if (canTableScan) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return; } } // NOR and NOT we can't handle well with indices. If we see them here, they weren't // rewritten to remove the negation. Just output a collscan for those. if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::NOT) || QueryPlannerCommon::hasNode(query.root(), MatchExpression::NOR)) { // If there's a near predicate, we can't handle this. // TODO: Should canonicalized query detect this? if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR)) { warning() << "Can't handle NOT/NOR with GEO_NEAR"; return; } QLOG() << "NOT/NOR in plan, just outtping a collscan\n"; if (canTableScan) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return; } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { QLOG() << "predicate over field " << *it << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. BSONObj hintIndex = query.getParsed().getHint(); // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (!hintIndex.isEmpty()) { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { QLOG() << "hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); QLOG() << "hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { // This is supposed to be an error. warning() << "Can't find hint for " << hintIndex.toString(); return; } } else { QLOG() << "Finding relevant indices\n"; QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } for (size_t i = 0; i < relevantIndices.size(); ++i) { QLOG() << "relevant idx " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. // query.root() is now annotated with RelevantTag(s). QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QLOG() << "rated tree" << endl; QLOG() << query.root()->toString() << endl; // If there is a GEO_NEAR it must have an index it can use directly. // XXX: move into data access? MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode); vector<size_t> newFirst; // 2d + GEO_NEAR is annoying. Because 2d's GEO_NEAR isn't streaming we have to embed // the full query tree inside it as a matcher. for (size_t i = 0; i < tag->first.size(); ++i) { // GEO_NEAR has a non-2d index it can use. We can deal w/that in normal planning. if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) { newFirst.push_back(i); continue; } // If we're here, GEO_NEAR has a 2d index. We create a 2dgeonear plan with the // entire tree as a filter, if possible. GeoNear2DNode* solnRoot = new GeoNear2DNode(); solnRoot->nq = gnme->getData(); if (MatchExpression::GEO_NEAR != query.root()->matchType()) { // root is an AND, clone and delete the GEO_NEAR child. MatchExpression* filterTree = query.root()->shallowClone(); verify(MatchExpression::AND == filterTree->matchType()); bool foundChild = false; for (size_t i = 0; i < filterTree->numChildren(); ++i) { if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) { foundChild = true; filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i); break; } } verify(foundChild); solnRoot->filter.reset(filterTree); } solnRoot->numWanted = query.getParsed().getNumToReturn(); if (0 == solnRoot->numWanted) { solnRoot->numWanted = 100; } solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern; // Remove the 2d index. 2d can only be the first field, and we know there is // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll // only be first for gnNode. tag->first.erase(tag->first.begin() + i); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } } // Continue planning w/non-2d indices tagged for this pred. tag->first.swap(newFirst); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumerator isp(query.root(), &relevantIndices); isp.init(); MatchExpression* rawTree; while (isp.getNext(&rawTree)) { QLOG() << "about to build solntree from tagged tree:\n" << rawTree->toString() << endl; // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(query, rawTree, false, relevantIndices); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { QLOG() << "Planner: adding solution:\n" << soln->toString() << endl; out->push_back(soln); } } } QLOG() << "Planner: outputted " << out->size() << " indexed solutions.\n"; // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty() && (0 == out->size())) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); if (NULL != soln) { QLOG() << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return; } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // // XXX XXX: Can we do this even if the index is sparse? Might we miss things? if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasSortStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; if (providesSort(query, kp)) { QLOG() << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { QLOG() << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { out->push_back(soln); break; } } } } } // TODO: Do we always want to offer a collscan solution? // XXX: currently disabling the always-use-a-collscan in order to find more planner bugs. if ( !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && ((params.options & QueryPlannerParams::INCLUDE_COLLSCAN) || (0 == out->size() && canTableScan))) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { out->push_back(collscan); QLOG() << "Planner: outputting a collscan:\n"; QLOG() << collscan->toString() << endl; } } }
Status MultiPlanStage::pickBestPlan(PlanYieldPolicy* yieldPolicy) { // Adds the amount of time taken by pickBestPlan() to executionTimeMillis. There's lots of // execution work that happens here, so this is needed for the time accounting to // make sense. ScopedTimer timer(&_commonStats.executionTimeMillis); size_t numWorks = getTrialPeriodWorks(_txn, _collection); size_t numResults = getTrialPeriodNumToReturn(*_query); // Work the plans, stopping when a plan hits EOF or returns some // fixed number of results. for (size_t ix = 0; ix < numWorks; ++ix) { bool moreToDo = workAllPlans(numResults, yieldPolicy); if (!moreToDo) { break; } } if (_failure) { invariant(WorkingSet::INVALID_ID != _statusMemberId); WorkingSetMember* member = _candidates[0].ws->get(_statusMemberId); return WorkingSetCommon::getMemberStatus(*member); } // After picking best plan, ranking will own plan stats from // candidate solutions (winner and losers). std::auto_ptr<PlanRankingDecision> ranking(new PlanRankingDecision); _bestPlanIdx = PlanRanker::pickBestPlan(_candidates, ranking.get()); verify(_bestPlanIdx >= 0 && _bestPlanIdx < static_cast<int>(_candidates.size())); // Copy candidate order. We will need this to sort candidate stats for explain // after transferring ownership of 'ranking' to plan cache. std::vector<size_t> candidateOrder = ranking->candidateOrder; CandidatePlan& bestCandidate = _candidates[_bestPlanIdx]; std::list<WorkingSetID>& alreadyProduced = bestCandidate.results; QuerySolution* bestSolution = bestCandidate.solution; LOG(5) << "Winning solution:\n" << bestSolution->toString() << endl; LOG(2) << "Winning plan: " << Explain::getPlanSummary(bestCandidate.root); _backupPlanIdx = kNoSuchPlan; if (bestSolution->hasBlockingStage && (0 == alreadyProduced.size())) { LOG(5) << "Winner has blocking stage, looking for backup plan...\n"; for (size_t ix = 0; ix < _candidates.size(); ++ix) { if (!_candidates[ix].solution->hasBlockingStage) { LOG(5) << "Candidate " << ix << " is backup child\n"; _backupPlanIdx = ix; break; } } } // Store the choice we just made in the cache, if the query is of a type that is safe to // cache. if (PlanCache::shouldCacheQuery(*_query) && _shouldCache) { // Create list of candidate solutions for the cache with // the best solution at the front. std::vector<QuerySolution*> solutions; // Generate solutions and ranking decisions sorted by score. for (size_t orderingIndex = 0; orderingIndex < candidateOrder.size(); ++orderingIndex) { // index into candidates/ranking size_t ix = candidateOrder[orderingIndex]; solutions.push_back(_candidates[ix].solution); } // Check solution cache data. Do not add to cache if // we have any invalid SolutionCacheData data. // XXX: One known example is 2D queries bool validSolutions = true; for (size_t ix = 0; ix < solutions.size(); ++ix) { if (NULL == solutions[ix]->cacheData.get()) { LOG(5) << "Not caching query because this solution has no cache data: " << solutions[ix]->toString(); validSolutions = false; break; } } if (validSolutions) { _collection->infoCache()->getPlanCache()->add(*_query, solutions, ranking.release()); } } return Status::OK(); }
void MultiPlanStage::pickBestPlan() { // Run each plan some number of times. This number is at least as great as // 'internalQueryPlanEvaluationWorks', but may be larger for big collections. size_t numWorks = internalQueryPlanEvaluationWorks; if (NULL != _collection) { // For large collections, the number of works is set to be this // fraction of the collection size. double fraction = internalQueryPlanEvaluationCollFraction; numWorks = std::max(size_t(internalQueryPlanEvaluationWorks), size_t(fraction * _collection->numRecords())); } // We treat ntoreturn as though it is a limit during plan ranking. // This means that ranking might not be great for sort + batchSize. // But it also means that we don't buffer too much data for sort + limit. // See SERVER-14174 for details. size_t numToReturn = _query->getParsed().getNumToReturn(); // Determine the number of results which we will produce during the plan // ranking phase before stopping. size_t numResults = (size_t)internalQueryPlanEvaluationMaxResults; if (numToReturn > 0) { numResults = std::min(numToReturn, numResults); } // Work the plans, stopping when a plan hits EOF or returns some // fixed number of results. for (size_t ix = 0; ix < numWorks; ++ix) { bool moreToDo = workAllPlans(numResults); if (!moreToDo) { break; } } if (_failure) { return; } // After picking best plan, ranking will own plan stats from // candidate solutions (winner and losers). std::auto_ptr<PlanRankingDecision> ranking(new PlanRankingDecision); _bestPlanIdx = PlanRanker::pickBestPlan(_candidates, ranking.get()); verify(_bestPlanIdx >= 0 && _bestPlanIdx < static_cast<int>(_candidates.size())); // Copy candidate order. We will need this to sort candidate stats for explain // after transferring ownership of 'ranking' to plan cache. std::vector<size_t> candidateOrder = ranking->candidateOrder; CandidatePlan& bestCandidate = _candidates[_bestPlanIdx]; std::list<WorkingSetID>& alreadyProduced = bestCandidate.results; QuerySolution* bestSolution = bestCandidate.solution; QLOG() << "Winning solution:\n" << bestSolution->toString() << endl; LOG(2) << "Winning plan: " << getPlanSummary(*bestSolution); _backupPlanIdx = kNoSuchPlan; if (bestSolution->hasBlockingStage && (0 == alreadyProduced.size())) { QLOG() << "Winner has blocking stage, looking for backup plan...\n"; for (size_t ix = 0; ix < _candidates.size(); ++ix) { if (!_candidates[ix].solution->hasBlockingStage) { QLOG() << "Candidate " << ix << " is backup child\n"; _backupPlanIdx = ix; break; } } } // Store the choice we just made in the cache. In order to do so, // 1) the query must be of a type that is safe to cache, and // 2) two or more plans cannot have tied for the win. Caching in the // case of ties can cause successive queries of the same shape to // use a bad index. if (PlanCache::shouldCacheQuery(*_query) && !ranking->tieForBest) { // Create list of candidate solutions for the cache with // the best solution at the front. std::vector<QuerySolution*> solutions; // Generate solutions and ranking decisions sorted by score. for (size_t orderingIndex = 0; orderingIndex < candidateOrder.size(); ++orderingIndex) { // index into candidates/ranking size_t ix = candidateOrder[orderingIndex]; solutions.push_back(_candidates[ix].solution); } // Check solution cache data. Do not add to cache if // we have any invalid SolutionCacheData data. // XXX: One known example is 2D queries bool validSolutions = true; for (size_t ix = 0; ix < solutions.size(); ++ix) { if (NULL == solutions[ix]->cacheData.get()) { QLOG() << "Not caching query because this solution has no cache data: " << solutions[ix]->toString(); validSolutions = false; break; } } if (validSolutions) { _collection->infoCache()->getPlanCache()->add(*_query, solutions, ranking.release()); } } }
bool SubplanRunner::runSubplans() { // This is what we annotate with the index selections and then turn into a solution. auto_ptr<OrMatchExpression> theOr( static_cast<OrMatchExpression*>(_query->root()->shallowClone())); // This is the skeleton of index selections that is inserted into the cache. auto_ptr<PlanCacheIndexTree> cacheData(new PlanCacheIndexTree()); for (size_t i = 0; i < theOr->numChildren(); ++i) { MatchExpression* orChild = theOr->getChild(i); auto_ptr<CanonicalQuery> orChildCQ(_cqs.front()); _cqs.pop(); // 'solutions' is owned by the SubplanRunner instance until // it is popped from the queue. vector<QuerySolution*> solutions = _solutions.front(); _solutions.pop(); // We already checked for zero solutions in planSubqueries(...). invariant(!solutions.empty()); if (1 == solutions.size()) { // There is only one solution. Transfer ownership to an auto_ptr. auto_ptr<QuerySolution> autoSoln(solutions[0]); // We want a well-formed *indexed* solution. if (NULL == autoSoln->cacheData.get()) { // For example, we don't cache things for 2d indices. QLOG() << "Subplanner: No cache data for subchild " << orChild->toString(); return false; } if (SolutionCacheData::USE_INDEX_TAGS_SOLN != autoSoln->cacheData->solnType) { QLOG() << "Subplanner: No indexed cache data for subchild " << orChild->toString(); return false; } // Add the index assignments to our original query. Status tagStatus = QueryPlanner::tagAccordingToCache( orChild, autoSoln->cacheData->tree.get(), _indexMap); if (!tagStatus.isOK()) { QLOG() << "Subplanner: Failed to extract indices from subchild " << orChild->toString(); return false; } // Add the child's cache data to the cache data we're creating for the main query. cacheData->children.push_back(autoSoln->cacheData->tree->clone()); } else { // N solutions, rank them. Takes ownership of orChildCQ. // the working set will be shared by the candidate plans and owned by the runner WorkingSet* sharedWorkingSet = new WorkingSet(); MultiPlanStage* multiPlanStage = new MultiPlanStage(_collection, orChildCQ.get()); // Dump all the solutions into the MPR. for (size_t ix = 0; ix < solutions.size(); ++ix) { PlanStage* nextPlanRoot; verify(StageBuilder::build(_txn, _collection, *solutions[ix], sharedWorkingSet, &nextPlanRoot)); // Owns first two arguments multiPlanStage->addPlan(solutions[ix], nextPlanRoot, sharedWorkingSet); } multiPlanStage->pickBestPlan(); if (! multiPlanStage->bestPlanChosen()) { QLOG() << "Subplanner: Failed to pick best plan for subchild " << orChildCQ->toString(); return false; } Runner* mpr = new SingleSolutionRunner(_collection, orChildCQ.release(), multiPlanStage->bestSolution(), multiPlanStage, sharedWorkingSet); _underlyingRunner.reset(mpr); if (_killed) { QLOG() << "Subplanner: Killed while picking best plan for subchild " << orChild->toString(); return false; } QuerySolution* bestSoln = multiPlanStage->bestSolution(); if (SolutionCacheData::USE_INDEX_TAGS_SOLN != bestSoln->cacheData->solnType) { QLOG() << "Subplanner: No indexed cache data for subchild " << orChild->toString(); return false; } // Add the index assignments to our original query. Status tagStatus = QueryPlanner::tagAccordingToCache( orChild, bestSoln->cacheData->tree.get(), _indexMap); if (!tagStatus.isOK()) { QLOG() << "Subplanner: Failed to extract indices from subchild " << orChild->toString(); return false; } cacheData->children.push_back(bestSoln->cacheData->tree->clone()); } } // Must do this before using the planner functionality. sortUsingTags(theOr.get()); // Use the cached index assignments to build solnRoot. Takes ownership of 'theOr' QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess( *_query, theOr.release(), false, _plannerParams.indices); if (NULL == solnRoot) { QLOG() << "Subplanner: Failed to build indexed data path for subplanned query\n"; return false; } QLOG() << "Subplanner: fully tagged tree is " << solnRoot->toString(); // Takes ownership of 'solnRoot' QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(*_query, _plannerParams, solnRoot); if (NULL == soln) { QLOG() << "Subplanner: Failed to analyze subplanned query"; return false; } // We want our franken-solution to be cached. SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(cacheData.release()); soln->cacheData.reset(scd); QLOG() << "Subplanner: Composite solution is " << soln->toString() << endl; // We use one of these even if there is one plan. We do this so that the entry is cached // with stats obtained in the same fashion as a competitive ranking would have obtained // them. MultiPlanStage* multiPlanStage = new MultiPlanStage(_collection, _query.get()); WorkingSet* ws = new WorkingSet(); PlanStage* root; verify(StageBuilder::build(_txn, _collection, *soln, ws, &root)); multiPlanStage->addPlan(soln, root, ws); // Takes ownership first two arguments. multiPlanStage->pickBestPlan(); if (! multiPlanStage->bestPlanChosen()) { QLOG() << "Subplanner: Failed to pick best plan for subchild " << _query->toString(); return false; } Runner* mpr = new SingleSolutionRunner(_collection, _query.release(), multiPlanStage->bestSolution(), multiPlanStage, ws); _underlyingRunner.reset(mpr); return true; }
// static Status QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, std::vector<QuerySolution*>* out) { QLOG() << "=============================\n" << "Beginning planning, options = " << optionString(params.options) << endl << "Canonical query:\n" << query.toString() << endl << "=============================" << endl; for (size_t i = 0; i < params.indices.size(); ++i) { QLOG() << "idx " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().hasOption(QueryOption_CursorTailable)) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } // The hint can be $natural: 1. If this happens, output a collscan. It's a weird way of // saying "table scan for two, please." if (!query.getParsed().getHint().isEmpty()) { BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural"); if (!natural.eoo()) { QLOG() << "forcing a table scan due to hinted $natural\n"; // min/max are incompatible with $natural. if (canTableScan && query.getParsed().getMin().isEmpty() && query.getParsed().getMax().isEmpty()) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { QLOG() << "predicate over field " << *it << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. BSONObj hintIndex = query.getParsed().getHint(); // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (hintIndex.isEmpty()) { QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } else { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { QLOG() << "hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); QLOG() << "hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { return Status(ErrorCodes::BadValue, "bad hint"); } } // Deal with the .min() and .max() query options. If either exist we can only use an index // that matches the object inside. if (!query.getParsed().getMin().isEmpty() || !query.getParsed().getMax().isEmpty()) { BSONObj minObj = query.getParsed().getMin(); BSONObj maxObj = query.getParsed().getMax(); // This is the index into params.indices[...] that we use. size_t idxNo = numeric_limits<size_t>::max(); // If there's an index hinted we need to be able to use it. if (!hintIndex.isEmpty()) { if (!minObj.isEmpty() && !indexCompatibleMaxMin(minObj, hintIndex)) { QLOG() << "minobj doesnt work w hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min query"); } if (!maxObj.isEmpty() && !indexCompatibleMaxMin(maxObj, hintIndex)) { QLOG() << "maxobj doesnt work w hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with max query"); } idxNo = hintIndexNumber; } else { // No hinted index, look for one that is compatible (has same field names and // ordering thereof). for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; BSONObj toUse = minObj.isEmpty() ? maxObj : minObj; if (indexCompatibleMaxMin(toUse, kp)) { idxNo = i; break; } } } if (idxNo == numeric_limits<size_t>::max()) { QLOG() << "Can't find relevant index to use for max/min query"; // Can't find an index to use, bail out. return Status(ErrorCodes::BadValue, "unable to find relevant index for max/min query"); } // maxObj can be empty; the index scan just goes until the end. minObj can't be empty // though, so if it is, we make a minKey object. if (minObj.isEmpty()) { BSONObjBuilder bob; bob.appendMinKey(""); minObj = bob.obj(); } else { // Must strip off the field names to make an index key. minObj = stripFieldNames(minObj); } if (!maxObj.isEmpty()) { // Must strip off the field names to make an index key. maxObj = stripFieldNames(maxObj); } QLOG() << "max/min query using index " << params.indices[idxNo].toString() << endl; // Make our scan and output. QuerySolutionNode* solnRoot = QueryPlannerAccess::makeIndexScan(params.indices[idxNo], query, params, minObj, maxObj); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } return Status::OK(); } for (size_t i = 0; i < relevantIndices.size(); ++i) { QLOG() << "relevant idx " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. // query.root() is now annotated with RelevantTag(s). QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QLOG() << "rated tree" << endl; QLOG() << query.root()->toString() << endl; // If there is a GEO_NEAR it must have an index it can use directly. // XXX: move into data access? MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { QLOG() << "unable to find index for $geoNear query" << endl; return Status(ErrorCodes::BadValue, "unable to find index for $geoNear query"); } GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode); vector<size_t> newFirst; // 2d + GEO_NEAR is annoying. Because 2d's GEO_NEAR isn't streaming we have to embed // the full query tree inside it as a matcher. for (size_t i = 0; i < tag->first.size(); ++i) { // GEO_NEAR has a non-2d index it can use. We can deal w/that in normal planning. if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) { newFirst.push_back(i); continue; } // If we're here, GEO_NEAR has a 2d index. We create a 2dgeonear plan with the // entire tree as a filter, if possible. GeoNear2DNode* solnRoot = new GeoNear2DNode(); solnRoot->nq = gnme->getData(); if (NULL != query.getProj()) { solnRoot->addPointMeta = query.getProj()->wantGeoNearPoint(); solnRoot->addDistMeta = query.getProj()->wantGeoNearDistance(); } if (MatchExpression::GEO_NEAR != query.root()->matchType()) { // root is an AND, clone and delete the GEO_NEAR child. MatchExpression* filterTree = query.root()->shallowClone(); verify(MatchExpression::AND == filterTree->matchType()); bool foundChild = false; for (size_t i = 0; i < filterTree->numChildren(); ++i) { if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) { foundChild = true; filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i); break; } } verify(foundChild); solnRoot->filter.reset(filterTree); } solnRoot->numWanted = query.getParsed().getNumToReturn(); if (0 == solnRoot->numWanted) { solnRoot->numWanted = 100; } solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern; // Remove the 2d index. 2d can only be the first field, and we know there is // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll // only be first for gnNode. tag->first.erase(tag->first.begin() + i); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } } // Continue planning w/non-2d indices tagged for this pred. tag->first.swap(newFirst); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return Status::OK(); } } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return Status::OK(); } } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumeratorParams enumParams; enumParams.intersect = params.options & QueryPlannerParams::INDEX_INTERSECTION; enumParams.root = query.root(); enumParams.indices = &relevantIndices; PlanEnumerator isp(enumParams); isp.init(); MatchExpression* rawTree; // XXX: have limit on # of indexed solns we'll consider. We could have a perverse // query and index that could make n^2 very unpleasant. while (isp.getNext(&rawTree)) { QLOG() << "about to build solntree from tagged tree:\n" << rawTree->toString() << endl; // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(query, rawTree, false, relevantIndices); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { QLOG() << "Planner: adding solution:\n" << soln->toString() << endl; out->push_back(soln); } } } QLOG() << "Planner: outputted " << out->size() << " indexed solutions.\n"; // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty()) { if (0 == out->size()) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); verify(NULL != soln); QLOG() << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return Status::OK(); } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasSortStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const IndexEntry& index = params.indices[i]; if (index.sparse) { continue; } const BSONObj kp = LiteParsedQuery::normalizeSortOrder(index.keyPattern); if (providesSort(query, kp)) { QLOG() << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { QLOG() << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { out->push_back(soln); break; } } } } } // TODO: Do we always want to offer a collscan solution? // XXX: currently disabling the always-use-a-collscan in order to find more planner bugs. if ( !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && hintIndex.isEmpty() && ((params.options & QueryPlannerParams::INCLUDE_COLLSCAN) || (0 == out->size() && canTableScan))) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { out->push_back(collscan); QLOG() << "Planner: outputting a collscan:\n"; QLOG() << collscan->toString() << endl; } } return Status::OK(); }