示例#1
0
bool DeclContext::lookupQualified(Type type,
                                  DeclName member,
                                  NLOptions options,
                                  LazyResolver *typeResolver,
                                  SmallVectorImpl<ValueDecl *> &decls) const {
  using namespace namelookup;
  assert(decls.empty() && "additive lookup not supported");

  if (type->is<ErrorType>())
    return false;

  auto checkLookupCascading = [this, options]() -> Optional<bool> {
    switch (static_cast<unsigned>(options & NL_KnownDependencyMask)) {
    case 0:
      return isCascadingContextForLookup(/*excludeFunctions=*/false);
    case NL_KnownNonCascadingDependency:
      return false;
    case NL_KnownCascadingDependency:
      return true;
    case NL_KnownNoDependency:
      return None;
    default:
      // FIXME: Use llvm::CountPopulation_64 when that's declared constexpr.
      static_assert(__builtin_popcountll(NL_KnownDependencyMask) == 2,
                    "mask should only include four values");
      llvm_unreachable("mask only includes four values");
    }
  };

  // Look through lvalue and inout types.
  type = type->getLValueOrInOutObjectType();

  // Look through metatypes.
  if (auto metaTy = type->getAs<AnyMetatypeType>())
    type = metaTy->getInstanceType();

  // Look through DynamicSelf.
  if (auto dynamicSelf = type->getAs<DynamicSelfType>())
    type = dynamicSelf->getSelfType();

  // Look for module references.
  if (auto moduleTy = type->getAs<ModuleType>()) {
    Module *module = moduleTy->getModule();
    auto topLevelScope = getModuleScopeContext();
    if (module == topLevelScope->getParentModule()) {
      if (auto maybeLookupCascade = checkLookupCascading()) {
        recordLookupOfTopLevelName(topLevelScope, member,
                                   maybeLookupCascade.getValue());
      }
      lookupInModule(module, /*accessPath=*/{}, member, decls,
                     NLKind::QualifiedLookup, ResolutionKind::Overloadable,
                     typeResolver, topLevelScope);
    } else {
      // Note: This is a lookup into another module. Unless we're compiling
      // multiple modules at once, or if the other module re-exports this one,
      // it shouldn't be possible to have a dependency from that module on
      // anything in this one.

      // Perform the lookup in all imports of this module.
      forAllVisibleModules(this,
                           [&](const Module::ImportedModule &import) -> bool {
        if (import.second != module)
          return true;
        lookupInModule(import.second, import.first, member, decls,
                       NLKind::QualifiedLookup, ResolutionKind::Overloadable,
                       typeResolver, topLevelScope);
        // If we're able to do an unscoped lookup, we see everything. No need
        // to keep going.
        return !import.first.empty();
      });
    }

    llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
    decls.erase(std::remove_if(decls.begin(), decls.end(),
                               [&](ValueDecl *vd) -> bool {
      // If we're performing a type lookup, don't even attempt to validate
      // the decl if its not a type.
      if ((options & NL_OnlyTypes) && !isa<TypeDecl>(vd))
        return true;

      return !knownDecls.insert(vd).second;
    }), decls.end());

    if (auto *debugClient = topLevelScope->getParentModule()->getDebugClient())
      filterForDiscriminator(decls, debugClient);
    
    return !decls.empty();
  }

  auto &ctx = getASTContext();
  if (!ctx.LangOpts.EnableAccessControl)
    options |= NL_IgnoreAccessibility;

  // The set of nominal type declarations we should (and have) visited.
  SmallVector<NominalTypeDecl *, 4> stack;
  llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;

  // Handle nominal types.
  bool wantProtocolMembers = false;
  bool wantLookupInAllClasses = false;
  if (auto nominal = type->getAnyNominal()) {
    visited.insert(nominal);
    stack.push_back(nominal);
    
    wantProtocolMembers = (options & NL_ProtocolMembers) &&
                          !isa<ProtocolDecl>(nominal);

    // If we want dynamic lookup and we're searching in the
    // AnyObject protocol, note this for later.
    if (options & NL_DynamicLookup) {
      if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
        if (proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
          wantLookupInAllClasses = true;
      }
    }
  }
  // Handle archetypes
  else if (auto archetypeTy = type->getAs<ArchetypeType>()) {
    // Look in the protocols to which the archetype conforms (always).
    for (auto proto : archetypeTy->getConformsTo())
      if (visited.insert(proto).second)
        stack.push_back(proto);

    // If requested, look into the superclasses of this archetype.
    if (options & NL_VisitSupertypes) {
      if (auto superclassTy = archetypeTy->getSuperclass()) {
        if (auto superclassDecl = superclassTy->getAnyNominal()) {
          if (visited.insert(superclassDecl).second) {
            stack.push_back(superclassDecl);

            wantProtocolMembers = (options & NL_ProtocolMembers) &&
                                  !isa<ProtocolDecl>(superclassDecl);
          }
        }
      }
    }
  }
  // Handle protocol compositions.
  else if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
    SmallVector<ProtocolDecl *, 4> protocols;
    if (compositionTy->isExistentialType(protocols)) {
      for (auto proto : protocols) {
        if (visited.insert(proto).second) {
          stack.push_back(proto);

          // If we want dynamic lookup and this is the AnyObject
          // protocol, note this for later.
          if ((options & NL_DynamicLookup) &&
              proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
            wantLookupInAllClasses = true;
        }
      }
    }
  }

  // Allow filtering of the visible declarations based on various
  // criteria.
  bool onlyCompleteObjectInits = false;
  auto isAcceptableDecl = [&](NominalTypeDecl *current, Decl *decl) -> bool {
    // If the decl is currently being type checked, then we have something
    // cyclic going on.  Instead of poking at parts that are potentially not
    // set up, just assume it is acceptable.  This will make sure we produce an
    // error later.
    if (decl->isBeingTypeChecked())
      return true;
    
    // Filter out designated initializers, if requested.
    if (onlyCompleteObjectInits) {
      if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
        if (!ctor->isInheritable())
          return false;
      } else {
        return false;
      }
    }

    // Ignore stub implementations.
    if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
      if (ctor->hasStubImplementation())
        return false;
    }

    // Check access.
    if (!(options & NL_IgnoreAccessibility))
      if (auto VD = dyn_cast<ValueDecl>(decl))
        return VD->isAccessibleFrom(this);

    return true;
  };

  ReferencedNameTracker *tracker = nullptr;
  if (auto containingSourceFile = dyn_cast<SourceFile>(getModuleScopeContext()))
    tracker = containingSourceFile->getReferencedNameTracker();

  bool isLookupCascading;
  if (tracker) {
    if (auto maybeLookupCascade = checkLookupCascading())
      isLookupCascading = maybeLookupCascade.getValue();
    else
      tracker = nullptr;
  }

  // Visit all of the nominal types we know about, discovering any others
  // we need along the way.
  while (!stack.empty()) {
    auto current = stack.back();
    stack.pop_back();

    if (tracker)
      tracker->addUsedMember({current, member.getBaseName()},isLookupCascading);

    // Make sure we've resolved implicit constructors, if we need them.
    if (member.getBaseName() == ctx.Id_init && typeResolver)
      typeResolver->resolveImplicitConstructors(current);

    // Look for results within the current nominal type and its extensions.
    bool currentIsProtocol = isa<ProtocolDecl>(current);
    for (auto decl : current->lookupDirect(member)) {
      // If we're performing a type lookup, don't even attempt to validate
      // the decl if its not a type.
      if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
        continue;

      // Resolve the declaration signature when we find the
      // declaration.
      if (typeResolver && !decl->isBeingTypeChecked()) {
        typeResolver->resolveDeclSignature(decl);

        if (!decl->hasType())
          continue;
      }

      if (isAcceptableDecl(current, decl))
        decls.push_back(decl);
    }

    // If we're not supposed to visit our supertypes, we're done.
    if ((options & NL_VisitSupertypes) == 0)
      continue;

    // Visit superclass.
    if (auto classDecl = dyn_cast<ClassDecl>(current)) {
      // If we're looking for initializers, only look at the superclass if the
      // current class permits inheritance. Even then, only find complete
      // object initializers.
      bool visitSuperclass = true;
      if (member.getBaseName() == ctx.Id_init) {
        if (classDecl->inheritsSuperclassInitializers(typeResolver))
          onlyCompleteObjectInits = true;
        else
          visitSuperclass = false;
      }

      if (visitSuperclass) {
        if (auto superclassType = classDecl->getSuperclass())
          if (auto superclassDecl = superclassType->getClassOrBoundGenericClass())
            if (visited.insert(superclassDecl).second)
              stack.push_back(superclassDecl);
      }
    }

    // If we're not looking at a protocol and we're not supposed to
    // visit the protocols that this type conforms to, skip the next
    // step.
    if (!wantProtocolMembers && !currentIsProtocol)
      continue;

    SmallVector<ProtocolDecl *, 4> protocols;
    for (auto proto : current->getAllProtocols()) {
      if (visited.insert(proto).second) {
        stack.push_back(proto);
      }
    }

    // For a class, we don't need to visit the protocol members of the
    // superclass: that's already handled.
    if (isa<ClassDecl>(current))
      wantProtocolMembers = false;
  }

  // If we want to perform lookup into all classes, do so now.
  if (wantLookupInAllClasses) {
    if (tracker)
      tracker->addDynamicLookupName(member.getBaseName(), isLookupCascading);

    // Collect all of the visible declarations.
    SmallVector<ValueDecl *, 4> allDecls;
    forAllVisibleModules(this, [&](Module::ImportedModule import) {
      import.second->lookupClassMember(import.first, member, allDecls);
    });

    // For each declaration whose context is not something we've
    // already visited above, add it to the list of declarations.
    llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
    for (auto decl : allDecls) {
      // If we're performing a type lookup, don't even attempt to validate
      // the decl if its not a type.
      if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
        continue;

      if (typeResolver && !decl->isBeingTypeChecked()) {
        typeResolver->resolveDeclSignature(decl);
        if (!decl->hasType())
          continue;
      }

      // If the declaration has an override, name lookup will also have
      // found the overridden method. Skip this declaration, because we
      // prefer the overridden method.
      if (decl->getOverriddenDecl())
        continue;

      auto dc = decl->getDeclContext();
      auto nominal = dyn_cast<NominalTypeDecl>(dc);
      if (!nominal) {
        auto ext = cast<ExtensionDecl>(dc);
        nominal = ext->getExtendedType()->getAnyNominal();
        assert(nominal && "Couldn't find nominal type?");
      }

      // If we didn't visit this nominal type above, add this
      // declaration to the list.
      if (!visited.count(nominal) && knownDecls.insert(decl).second &&
          isAcceptableDecl(nominal, decl))
        decls.push_back(decl);
    }
  }

  // If we're supposed to remove overridden declarations, do so now.
  if (options & NL_RemoveOverridden)
    removeOverriddenDecls(decls);

  // If we're supposed to remove shadowed/hidden declarations, do so now.
  Module *M = getParentModule();
  if (options & NL_RemoveNonVisible)
    removeShadowedDecls(decls, M, typeResolver);

  if (auto *debugClient = M->getDebugClient())
    filterForDiscriminator(decls, debugClient);

  // We're done. Report success/failure.
  return !decls.empty();
}