void region_prune_arcs(RegionDesc& region) { FTRACE(4, "region_prune_arcs\n"); region.sortBlocks(); auto const sortedBlocks = region.blocks(); // Maps region block ids to their RPO ids. auto blockToRPO = std::unordered_map<RegionDesc::BlockId,uint32_t>{}; auto blockInfos = std::vector<BlockInfo>(sortedBlocks.size()); auto workQ = dataflow_worklist<uint32_t>(sortedBlocks.size()); for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& b = sortedBlocks[rpoID]; auto& binfo = blockInfos[rpoID]; binfo.blockID = b->id(); blockToRPO[binfo.blockID] = rpoID; } workQ.push(0); blockInfos[0].in = entry_state(region); FTRACE(4, "Iterating:\n"); do { auto const rpoID = workQ.pop(); auto& binfo = blockInfos[rpoID]; FTRACE(4, "B{}\n", binfo.blockID); binfo.out = binfo.in; apply_transfer_function( binfo.out, region.block(binfo.blockID)->postConds() ); for (auto& succ : region.succs(binfo.blockID)) { auto const succRPO = blockToRPO.find(succ); assertx(succRPO != end(blockToRPO)); auto& succInfo = blockInfos[succRPO->second]; if (preconds_may_pass(*region.block(succInfo.blockID), binfo.out)) { if (merge_into(succInfo.in, binfo.out)) { FTRACE(5, " -> {}\n", succInfo.blockID); workQ.push(succRPO->second); } } } } while (!workQ.empty()); FTRACE(2, "\nPostConds fixed point:\n{}\n", [&] () -> std::string { auto ret = std::string{}; for (auto& s : blockInfos) { folly::format(&ret, "B{}:\n{}", s.blockID, show(s.in)); } return ret; }() ); // Now remove any edge that looks like it will unconditionally fail type // predictions, and completely remove any block that can't be reached. using ArcIDs = std::pair<RegionDesc::BlockId,RegionDesc::BlockId>; auto toRemove = std::vector<ArcIDs>{}; for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& binfo = blockInfos[rpoID]; for (auto& succ : region.succs(binfo.blockID)) { auto const succRPO = blockToRPO.find(succ); assertx(succRPO != end(blockToRPO)); auto const& succInfo = blockInfos[succRPO->second]; if (!binfo.in.initialized || !succInfo.in.initialized || !preconds_may_pass(*region.block(succInfo.blockID), binfo.out)) { FTRACE(2, "Pruning arc: B{} -> B{}\n", binfo.blockID, succInfo.blockID); toRemove.emplace_back(binfo.blockID, succInfo.blockID); } } for (auto& r : toRemove) region.removeArc(r.first, r.second); toRemove.clear(); } // Get rid of the completely unreachable blocks, now that any arcs to/from // them are gone. for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& binfo = blockInfos[rpoID]; if (!binfo.in.initialized) { FTRACE(2, "Pruning block: B{}\n", binfo.blockID); region.deleteBlock(binfo.blockID); } } FTRACE(2, "\n"); }
/* * Checks if the given region is well-formed, which entails the * following properties: * * 1) The region has at least one block. * * 2) Each block in the region has a different id. * * 3) All arcs involve blocks within the region. * * 4) For each arc, the bytecode offset of the dst block must * possibly follow the execution of the src block. * * 5) Each block contains at most one successor corresponding to a * given SrcKey. * * 6) The region doesn't contain any loops, unless JitLoops is * enabled. * * 7) All blocks are reachable from the entry block. * * 8) For each block, there must be a path from the entry to it that * includes only earlier blocks in the region. * * 9) The region is topologically sorted unless loops are enabled. * * 10) The block-retranslation chains cannot have cycles. * */ bool check(const RegionDesc& region, std::string& error) { auto bad = [&](const std::string& errorMsg) { error = errorMsg; return false; }; // 1) The region has at least one block. if (region.empty()) return bad("empty region"); RegionDesc::BlockIdSet blockSet; for (auto b : region.blocks()) { auto bid = b->id(); // 2) Each block in the region has a different id. if (blockSet.count(bid)) { return bad(folly::sformat("many blocks with id {}", bid)); } blockSet.insert(bid); } for (auto b : region.blocks()) { auto bid = b->id(); SrcKey lastSk = region.block(bid)->last(); OffsetSet validSuccOffsets = lastSk.succOffsets(); OffsetSet succOffsets; for (auto succ : region.succs(bid)) { SrcKey succSk = region.block(succ)->start(); Offset succOffset = succSk.offset(); // 3) All arcs involve blocks within the region. if (blockSet.count(succ) == 0) { return bad(folly::sformat("arc with dst not in the region: {} -> {}", bid, succ)); } // Checks 4) and 5) below don't make sense for arcs corresponding // to inlined calls and returns, so skip them in such cases. // This won't be possible once task #4076399 is done. if (lastSk.func() != succSk.func()) continue; // 4) For each arc, the bytecode offset of the dst block must // possibly follow the execution of the src block. if (validSuccOffsets.count(succOffset) == 0) { return bad(folly::sformat("arc with impossible control flow: {} -> {}", bid, succ)); } // 5) Each block contains at most one successor corresponding to a // given SrcKey. if (succOffsets.count(succOffset) > 0) { return bad(folly::sformat("block {} has multiple successors with SK {}", bid, show(succSk))); } succOffsets.insert(succOffset); } for (auto pred : region.preds(bid)) { if (blockSet.count(pred) == 0) { return bad(folly::sformat("arc with src not in the region: {} -> {}", pred, bid)); } } } // 6) is checked by dfsCheck. DFSChecker dfsCheck(region); if (!dfsCheck.check(region.entry()->id())) { return bad("region is cyclic"); } // 7) All blocks are reachable from the entry (first) block. if (dfsCheck.numVisited() != blockSet.size()) { return bad("region has unreachable blocks"); } // 8) and 9) are checked below. RegionDesc::BlockIdSet visited; auto& blocks = region.blocks(); for (unsigned i = 0; i < blocks.size(); i++) { auto bid = blocks[i]->id(); unsigned nVisited = 0; for (auto pred : region.preds(bid)) { nVisited += visited.count(pred); } // 8) For each block, there must be a path from the entry to it that // includes only earlier blocks in the region. if (nVisited == 0 && i != 0) { return bad(folly::sformat("block {} appears before all its predecessors", bid)); } // 9) The region is topologically sorted unless loops are enabled. if (!RuntimeOption::EvalJitLoops && nVisited != region.preds(bid).size()) { return bad(folly::sformat("non-topological order (bid: {})", bid)); } visited.insert(bid); } // 10) The block-retranslation chains cannot have cycles. for (auto b : blocks) { auto bid = b->id(); RegionDesc::BlockIdSet chainSet; chainSet.insert(bid); while (auto next = region.nextRetrans(bid)) { auto nextId = next.value(); if (chainSet.count(nextId)) { return bad(folly::sformat("cyclic retranslation chain for block {}", bid)); } chainSet.insert(nextId); bid = nextId; } } return true; }
void region_prune_arcs(RegionDesc& region) { FTRACE(4, "region_prune_arcs\n"); region.sortBlocks(); auto const sortedBlocks = region.blocks(); // Maps region block ids to their RPO ids. auto blockToRPO = std::unordered_map<RegionDesc::BlockId,uint32_t>{}; auto blockInfos = std::vector<BlockInfo>(sortedBlocks.size()); auto workQ = dataflow_worklist<uint32_t>(sortedBlocks.size()); for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& b = sortedBlocks[rpoID]; auto& binfo = blockInfos[rpoID]; binfo.blockID = b->id(); blockToRPO[binfo.blockID] = rpoID; } workQ.push(0); blockInfos[0].in = entry_state(region); FTRACE(4, "Iterating:\n"); do { auto const rpoID = workQ.pop(); auto& binfo = blockInfos[rpoID]; FTRACE(4, "B{}\n", binfo.blockID); /* * This code currently assumes inlined functions were entirely contained * within a single profiling translation, and will need updates if we * inline bigger things in a way visible to region selection. * * Note: inlined blocks /may/ have postConditions, if they are the last * blocks from profiling translations. Currently any locations referred to * in postconditions for these blocks are for the outermost caller, so this * code handles that correctly. */ if (region.block(binfo.blockID)->inlineLevel() != 0) { assertx(region.block(binfo.blockID)->typePreConditions().empty()); } binfo.out = binfo.in; apply_transfer_function( binfo.out, region.block(binfo.blockID)->postConds() ); for (auto& succ : region.succs(binfo.blockID)) { auto const succRPO = blockToRPO.find(succ); assertx(succRPO != end(blockToRPO)); auto& succInfo = blockInfos[succRPO->second]; if (preconds_may_pass(*region.block(succInfo.blockID), binfo.out)) { if (merge_into(succInfo.in, binfo.out)) { FTRACE(5, " -> {}\n", succInfo.blockID); workQ.push(succRPO->second); } } } } while (!workQ.empty()); FTRACE(2, "\nPostConds fixed point:\n{}\n", [&] () -> std::string { auto ret = std::string{}; for (auto& s : blockInfos) { folly::format(&ret, "B{}:\n{}", s.blockID, show(s.in)); } return ret; }() ); // Now remove any edge that looks like it will unconditionally fail type // predictions, and completely remove any block that can't be reached. using ArcIDs = std::pair<RegionDesc::BlockId,RegionDesc::BlockId>; auto toRemove = std::vector<ArcIDs>{}; for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& binfo = blockInfos[rpoID]; for (auto& succ : region.succs(binfo.blockID)) { auto const succRPO = blockToRPO.find(succ); assertx(succRPO != end(blockToRPO)); auto const& succInfo = blockInfos[succRPO->second]; if (!binfo.in.initialized || !succInfo.in.initialized || !preconds_may_pass(*region.block(succInfo.blockID), binfo.out)) { FTRACE(2, "Pruning arc: B{} -> B{}\n", binfo.blockID, succInfo.blockID); toRemove.emplace_back(binfo.blockID, succInfo.blockID); } } for (auto& r : toRemove) region.removeArc(r.first, r.second); toRemove.clear(); } // Get rid of the completely unreachable blocks, now that any arcs to/from // them are gone. for (auto rpoID = uint32_t{0}; rpoID < sortedBlocks.size(); ++rpoID) { auto const& binfo = blockInfos[rpoID]; if (!binfo.in.initialized) { FTRACE(2, "Pruning block: B{}\n", binfo.blockID); region.deleteBlock(binfo.blockID); } } FTRACE(2, "\n"); }