bool RegisterContextPOSIXProcessMonitor_powerpc::ReadRegister(const RegisterInfo *reg_info, RegisterValue &value) { if (!reg_info) return false; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (IsFPR(reg)) { if (!ReadFPR()) return false; uint8_t *src = (uint8_t *)&m_fpr_powerpc + reg_info->byte_offset; value.SetUInt64(*(uint64_t*)src); } else if (IsGPR(reg)) { bool success = ReadRegister(reg, value); if (success) { // If our return byte size was greater than the return value reg size, then // use the type specified by reg_info rather than the uint64_t default if (value.GetByteSize() > reg_info->byte_size) value.SetType(reg_info); } return success; } return false; }
bool RegisterContextPOSIXProcessMonitor_x86_64::WriteRegister(const RegisterInfo *reg_info, const RegisterValue &value) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (IsGPR(reg)) return WriteRegister(reg, value); if (IsFPR(reg, GetFPRType())) { switch (reg) { default: if (reg_info->encoding != eEncodingVector) return false; if (reg >= fpu_stmm0 && reg <= fpu_stmm7) ::memcpy (m_fpr.xstate.fxsave.stmm[reg - fpu_stmm0].bytes, value.GetBytes(), value.GetByteSize()); if (reg >= fpu_xmm0 && reg <= fpu_xmm15) ::memcpy (m_fpr.xstate.fxsave.xmm[reg - fpu_xmm0].bytes, value.GetBytes(), value.GetByteSize()); if (reg >= fpu_ymm0 && reg <= fpu_ymm15) { if (GetFPRType() != eXSAVE) return false; // the target processor does not support AVX // Store ymm register content, and split into the register halves in xmm.bytes and ymmh.bytes ::memcpy (m_ymm_set.ymm[reg - fpu_ymm0].bytes, value.GetBytes(), value.GetByteSize()); if (false == CopyYMMtoXSTATE(reg, GetByteOrder())) return false; } break; case fpu_dp: m_fpr.xstate.fxsave.dp = value.GetAsUInt64(); break; case fpu_fcw: m_fpr.xstate.fxsave.fcw = value.GetAsUInt16(); break; case fpu_fsw: m_fpr.xstate.fxsave.fsw = value.GetAsUInt16(); break; case fpu_ip: m_fpr.xstate.fxsave.ip = value.GetAsUInt64(); break; case fpu_fop: m_fpr.xstate.fxsave.fop = value.GetAsUInt16(); break; case fpu_ftw: m_fpr.xstate.fxsave.ftw = value.GetAsUInt16(); break; case fpu_mxcsr: m_fpr.xstate.fxsave.mxcsr = value.GetAsUInt32(); break; case fpu_mxcsrmask: m_fpr.xstate.fxsave.mxcsrmask = value.GetAsUInt32(); break; } if (WriteFPR()) { if (IsAVX(reg)) return CopyYMMtoXSTATE(reg, GetByteOrder()); return true; } } return false; }
bool RegisterContextPOSIXProcessMonitor_x86_64::ReadRegister(const RegisterInfo *reg_info, RegisterValue &value) { if (!reg_info) return false; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (IsFPR(reg, GetFPRType())) { if (!ReadFPR()) return false; } else { bool success = ReadRegister(reg, value); // If an i386 register should be parsed from an x86_64 register... if (success && reg >= k_first_i386 && reg <= k_last_i386) if (value.GetByteSize() > reg_info->byte_size) value.SetType(reg_info); // ...use the type specified by reg_info rather than the uint64_t default return success; } if (reg_info->encoding == eEncodingVector) { ByteOrder byte_order = GetByteOrder(); if (byte_order != ByteOrder::eByteOrderInvalid) { if (reg >= fpu_stmm0 && reg <= fpu_stmm7) value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - fpu_stmm0].bytes, reg_info->byte_size, byte_order); if (reg >= fpu_xmm0 && reg <= fpu_xmm15) value.SetBytes(m_fpr.xstate.fxsave.xmm[reg - fpu_xmm0].bytes, reg_info->byte_size, byte_order); if (reg >= fpu_ymm0 && reg <= fpu_ymm15) { // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes if (GetFPRType() == eXSAVE && CopyXSTATEtoYMM(reg, byte_order)) value.SetBytes(m_ymm_set.ymm[reg - fpu_ymm0].bytes, reg_info->byte_size, byte_order); else return false; } return value.GetType() == RegisterValue::eTypeBytes; } return false; } // Note that lldb uses slightly different naming conventions from sys/user.h switch (reg) { default: return false; case fpu_dp: value = m_fpr.xstate.fxsave.dp; break; case fpu_fcw: value = m_fpr.xstate.fxsave.fcw; break; case fpu_fsw: value = m_fpr.xstate.fxsave.fsw; break; case fpu_ip: value = m_fpr.xstate.fxsave.ip; break; case fpu_fop: value = m_fpr.xstate.fxsave.fop; break; case fpu_ftw: value = m_fpr.xstate.fxsave.ftw; break; case fpu_mxcsr: value = m_fpr.xstate.fxsave.mxcsr; break; case fpu_mxcsrmask: value = m_fpr.xstate.fxsave.mxcsrmask; break; } return true; }
bool RegisterContextDarwin_arm64::WriteRegister(const RegisterInfo *reg_info, const RegisterValue &value) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; int set = GetSetForNativeRegNum(reg); if (set == -1) return false; if (ReadRegisterSet(set, false) != KERN_SUCCESS) return false; switch (reg) { case gpr_x0: case gpr_x1: case gpr_x2: case gpr_x3: case gpr_x4: case gpr_x5: case gpr_x6: case gpr_x7: case gpr_x8: case gpr_x9: case gpr_x10: case gpr_x11: case gpr_x12: case gpr_x13: case gpr_x14: case gpr_x15: case gpr_x16: case gpr_x17: case gpr_x18: case gpr_x19: case gpr_x20: case gpr_x21: case gpr_x22: case gpr_x23: case gpr_x24: case gpr_x25: case gpr_x26: case gpr_x27: case gpr_x28: case gpr_fp: case gpr_sp: case gpr_lr: case gpr_pc: case gpr_cpsr: gpr.x[reg - gpr_x0] = value.GetAsUInt64(); break; case fpu_v0: case fpu_v1: case fpu_v2: case fpu_v3: case fpu_v4: case fpu_v5: case fpu_v6: case fpu_v7: case fpu_v8: case fpu_v9: case fpu_v10: case fpu_v11: case fpu_v12: case fpu_v13: case fpu_v14: case fpu_v15: case fpu_v16: case fpu_v17: case fpu_v18: case fpu_v19: case fpu_v20: case fpu_v21: case fpu_v22: case fpu_v23: case fpu_v24: case fpu_v25: case fpu_v26: case fpu_v27: case fpu_v28: case fpu_v29: case fpu_v30: case fpu_v31: ::memcpy(fpu.v[reg].bytes, value.GetBytes(), value.GetByteSize()); break; case fpu_fpsr: fpu.fpsr = value.GetAsUInt32(); break; case fpu_fpcr: fpu.fpcr = value.GetAsUInt32(); break; case exc_exception: exc.exception = value.GetAsUInt32(); break; case exc_esr: exc.esr = value.GetAsUInt32(); break; case exc_far: exc.far = value.GetAsUInt64(); break; default: return false; } return WriteRegisterSet(set) == KERN_SUCCESS; }
bool RegisterContextDarwin_x86_64::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &value) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; int set = RegisterContextDarwin_x86_64::GetSetForNativeRegNum (reg); if (set == -1) return false; if (ReadRegisterSet(set, false) != 0) return false; switch (reg) { case gpr_rax: case gpr_rbx: case gpr_rcx: case gpr_rdx: case gpr_rdi: case gpr_rsi: case gpr_rbp: case gpr_rsp: case gpr_r8: case gpr_r9: case gpr_r10: case gpr_r11: case gpr_r12: case gpr_r13: case gpr_r14: case gpr_r15: case gpr_rip: case gpr_rflags: case gpr_cs: case gpr_fs: case gpr_gs: (&gpr.rax)[reg - gpr_rax] = value.GetAsUInt64(); break; case fpu_fcw: fpu.fcw = value.GetAsUInt16(); break; case fpu_fsw: fpu.fsw = value.GetAsUInt16(); break; case fpu_ftw: fpu.ftw = value.GetAsUInt8(); break; case fpu_fop: fpu.fop = value.GetAsUInt16(); break; case fpu_ip: fpu.ip = value.GetAsUInt32(); break; case fpu_cs: fpu.cs = value.GetAsUInt16(); break; case fpu_dp: fpu.dp = value.GetAsUInt32(); break; case fpu_ds: fpu.ds = value.GetAsUInt16(); break; case fpu_mxcsr: fpu.mxcsr = value.GetAsUInt32(); break; case fpu_mxcsrmask: fpu.mxcsrmask = value.GetAsUInt32(); break; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: ::memcpy (fpu.stmm[reg - fpu_stmm0].bytes, value.GetBytes(), value.GetByteSize()); break; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: case fpu_xmm8: case fpu_xmm9: case fpu_xmm10: case fpu_xmm11: case fpu_xmm12: case fpu_xmm13: case fpu_xmm14: case fpu_xmm15: ::memcpy (fpu.xmm[reg - fpu_xmm0].bytes, value.GetBytes(), value.GetByteSize()); return false; case exc_trapno: exc.trapno = value.GetAsUInt32(); break; case exc_err: exc.err = value.GetAsUInt32(); break; case exc_faultvaddr: exc.faultvaddr = value.GetAsUInt64(); break; default: return false; } return WriteRegisterSet(set) == 0; }
lldb_private::Error NativeRegisterContextLinux_mips64::ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) { Error error; if (!reg_info) { error.SetErrorString ("reg_info NULL"); return error; } const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; if (reg == LLDB_INVALID_REGNUM) { // This is likely an internal register for lldb use only and should not be directly queried. error.SetErrorStringWithFormat ("register \"%s\" is an internal-only lldb register, cannot read directly", reg_info->name); return error; } if (IsMSA(reg) && !IsMSAAvailable()) { error.SetErrorString ("MSA not available on this processor"); return error; } if (IsMSA(reg) || IsFPR(reg)) { uint8_t *src; error = ReadCP1(); if (!error.Success()) { error.SetErrorString ("failed to read co-processor 1 register"); return error; } if (IsFPR(reg)) { assert (reg_info->byte_offset < sizeof(UserArea)); src = (uint8_t *)&m_fpr + reg_info->byte_offset - (sizeof(m_gpr)); } else { assert (reg_info->byte_offset < sizeof(UserArea)); src = (uint8_t *)&m_msa + reg_info->byte_offset - (sizeof(m_gpr) + sizeof(m_fpr)); } switch (reg_info->byte_size) { case 4: reg_value.SetUInt32(*(uint32_t *)src); break; case 8: reg_value.SetUInt64(*(uint64_t *)src); break; case 16: reg_value.SetBytes((const void *)src, 16, GetByteOrder()); break; default: assert(false && "Unhandled data size."); error.SetErrorStringWithFormat ("unhandled byte size: %" PRIu32, reg_info->byte_size); break; } } else { error = ReadRegisterRaw(reg, reg_value); if (error.Success()) { // If our return byte size was greater than the return value reg size, then // use the type specified by reg_info rather than the uint64_t default if (reg_value.GetByteSize() > reg_info->byte_size) reg_value.SetType(reg_info); } } return error; }
bool RegisterContextDarwin_i386::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &value) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; int set = GetSetForNativeRegNum (reg); if (set == -1) return false; if (ReadRegisterSet(set, false) != 0) return false; switch (reg) { case gpr_eax: case gpr_ebx: case gpr_ecx: case gpr_edx: case gpr_edi: case gpr_esi: case gpr_ebp: case gpr_esp: case gpr_ss: case gpr_eflags: case gpr_eip: case gpr_cs: case gpr_ds: case gpr_es: case gpr_fs: case gpr_gs: (&gpr.eax)[reg - gpr_eax] = value.GetAsUInt32(); break; case fpu_fcw: fpu.fcw = value.GetAsUInt16(); break; case fpu_fsw: fpu.fsw = value.GetAsUInt16(); break; case fpu_ftw: fpu.ftw = value.GetAsUInt8(); break; case fpu_fop: fpu.fop = value.GetAsUInt16(); break; case fpu_ip: fpu.ip = value.GetAsUInt32(); break; case fpu_cs: fpu.cs = value.GetAsUInt16(); break; case fpu_dp: fpu.dp = value.GetAsUInt32(); break; case fpu_ds: fpu.ds = value.GetAsUInt16(); break; case fpu_mxcsr: fpu.mxcsr = value.GetAsUInt32(); break; case fpu_mxcsrmask: fpu.mxcsrmask = value.GetAsUInt32(); break; case fpu_stmm0: case fpu_stmm1: case fpu_stmm2: case fpu_stmm3: case fpu_stmm4: case fpu_stmm5: case fpu_stmm6: case fpu_stmm7: // These values don't fit into scalar types, RegisterContext::ReadRegisterBytes() // must be used for these registers ::memcpy (fpu.stmm[reg - fpu_stmm0].bytes, value.GetBytes(), value.GetByteSize()); return false; case fpu_xmm0: case fpu_xmm1: case fpu_xmm2: case fpu_xmm3: case fpu_xmm4: case fpu_xmm5: case fpu_xmm6: case fpu_xmm7: // These values don't fit into scalar types, RegisterContext::ReadRegisterBytes() // must be used for these registers ::memcpy (fpu.xmm[reg - fpu_xmm0].bytes, value.GetBytes(), value.GetByteSize()); return false; case exc_trapno: exc.trapno = value.GetAsUInt32(); break; case exc_err: exc.err = value.GetAsUInt32(); break; case exc_faultvaddr: exc.faultvaddr = value.GetAsUInt32(); break; default: return false; } return WriteRegisterSet(set) == 0; }