示例#1
0
//
// FBO solution
//
static void writeHiResScreenShotFBO(const char* name, UInt32 width, UInt32 height)
{
    size_t num_ports = win->getMFPort()->size();
    if (num_ports == 0)
        return;
    //
    // calc image dimensions
    //
    UInt32 winWidth  = win->getWidth();
    UInt32 winHeight = win->getHeight();

    if (width  < winWidth ) width  = winWidth;
    if (height < winHeight) height = winHeight;

    Real32 a = Real32(winWidth) / Real32(winHeight);
    width = UInt32(a*height);

    //
    // output stream for writing the final image
    //
    std::ofstream stream(name, std::ios::binary);
    if (stream.good() == false)
        return;

    //
    // Setup the FBO
    //
    FrameBufferObjectUnrecPtr fbo = FrameBufferObject::create();
    //
    // We use two render buffers. One for the color buffer and one for the depth and
    // stencil buffer. This example does not take credit of the stencil buffer. There-
    // fore a depth buffer would suffice. However, the use of the combined depth and
    // stencil buffer is useful in other contextes and hence used.
    //
    RenderBufferUnrecPtr colBuf = RenderBuffer::create();
    RenderBufferUnrecPtr  dsBuf = RenderBuffer::create();
    //
    // As we would like to read back the FBO color buffer, we must provide a fitting
    // image.
    //
    ImageUnrecPtr buffer_image = Image::create();
    buffer_image->set(Image::OSG_RGBA_PF, winWidth, winHeight);
    colBuf->setImage(buffer_image);
    //
    // We must setup the internal image formats of the two render buffers accordingly.
    //
    colBuf->setInternalFormat(GL_RGBA);
    dsBuf ->setInternalFormat(GL_DEPTH24_STENCIL8_EXT);
    //
    // we must inform the FBO about the actual used color render buffers.
    //
    fbo->editMFDrawBuffers()->push_back(GL_COLOR_ATTACHMENT0_EXT);
    //
    // The FBO takes responsibility of the render buffers. Notice, that the shared
    // depth/stencil buffer is provided twice. As the depth render buffer and as the
    // stencil render buffer.
    //
    fbo->setColorAttachment  (colBuf, 0);
    fbo->setDepthAttachment  (dsBuf);
    fbo->setStencilAttachment(dsBuf);
    //
    // Also the FBO must be sized correctly.
    //
    fbo->setWidth (winWidth );
    fbo->setHeight(winHeight);
    //
    // In order to read the color buffer back next two statements are necessary.
    //
    fbo->setPostProcessOnDeactivate(true);
    fbo->getColorAttachments(0)->setReadBack(true);

    //
    // We tile the final image and render each tile with the screen resolution
    // into the FBO. The more tiles we use the bigger the resolution of the
    // final image gets with respect to a provided measure of length.
    //
    typedef boost::tuple<TileCameraDecoratorUnrecPtr, bool, SimpleStageUnrecPtr, ViewportUnrecPtr> TupleT;
    std::vector<TupleT> decorators;
    decorators.resize(num_ports);

    //
    // Remember the stage viewports for later cleanup
    //
    std::stack<ViewportUnrecPtr> stage_viewports;

    //
    // Setup the tile camera decorators for each viewport of the window and
    // disable the tile property of tileable viewport backgrounds.
    //
    for (size_t i = 0; i < num_ports; ++i) {
        Viewport* vp = win->getPort(i);

        TileCameraDecoratorUnrecPtr decorator = TileCameraDecorator::create();

        decorator->setFullSize (width, height);
        decorator->setDecoratee(vp->getCamera());

        vp->setCamera(decorator);

        bool bTiled = false;
        TileableBackground* tbg = dynamic_cast<TileableBackground*>(vp->getBackground());
        if (tbg) {
            bTiled = tbg->getTile();
            tbg->setTile(false);
        }

        //
        // The scene manager root node does not provide the illumination of the
        // scene. This is governed internally by the manager. However, to take
        // credit of the illumination we scan to the final parent of the scene
        // graph.
        //
        Node* internalRoot = rootNode(mgr->getRoot());
        //
        // We would like to render the scene but won't detach it from its parent.
        // The VisitSubTree allows just that.
        //
        VisitSubTreeUnrecPtr visitor = VisitSubTree::create();
        visitor->setSubTreeRoot(internalRoot);
        NodeUnrecPtr visit_node = makeNodeFor(visitor);
        //
        // We clone the camera of the first viewport and do not swap the buffer on later
        // rendering. This way the image generation process is not noticable in the
        // window.
        //
        CameraUnrecPtr camera = dynamic_pointer_cast<Camera>(vp->getCamera()->shallowCopy());
        //
        // The stage object does provide a render target for the frame buffer attachment.
        // SimpleStage has a camera, a background and the left, right, top, bottom
        // fields to let you restrict rendering to a sub-rectangle of your FBO, i.e.
        // they give you a viewport.
        //
        SimpleStageUnrecPtr stage = SimpleStage::create();
        stage->setRenderTarget(fbo);
        stage->setCamera      (decorator);
        stage->setBackground  (vp->getBackground());
        //
        // Give the stage core a place to live
        //
        NodeUnrecPtr stage_node = makeNodeFor(stage);
        stage_node->addChild(visit_node);
        //
        //   root
        //    |
        //    +- SimpleStage
        //            |
        //            +- VisitSubTree -> ApplicationScene
        //
        NodeUnrecPtr root = makeCoredNode<Group>();
        root->addChild(stage_node);
        //
        // Give the root node a place to live, i.e. create a passive
        // viewport and add it to the window.
        //
        ViewportUnrecPtr stage_viewport = PassiveViewport::create();
        stage_viewport->setRoot      (root);
        stage_viewport->setBackground(vp->getBackground());
        stage_viewport->setCamera    (camera);

        win->addPort(stage_viewport);

        //
        // remember the decorator, the background tile prop setting and the stage setup
        //
        decorators[i] = boost::make_tuple(decorator, bTiled, stage, stage_viewport);
    }

    //
    // We write the image in simple ppm format. This one starts with a description
    // header which we output once on first write.
    //
    bool write_header = true;

    //
    // Calc the max y start position (width). We process the tiles from bottom
    // up and from left tp right as determined by the image format.
    //
    UInt32 yPosLast = 0;
    for (; yPosLast < height-winHeight; yPosLast += winHeight);

    //
    // Process from bottom to top
    //
    for (Int32 yPos = yPosLast; yPos >= 0; yPos -= winHeight)
    {
        UInt32 ySize = std::min(winHeight, height - yPos);

        //
        // Collect the tile images for each row, i.e. we write the
        // image in row manner to disk. This way the main memory is
        // only moderately stressed.
        //
        std::vector<ImageUnrecPtr> vecColImages;

        //
        // Process from left to right
        //
        for (UInt32 xPos = 0; xPos < width; xPos += winWidth)
        {
            UInt32 xSize = std::min(winWidth, width - xPos);
            //
            // The current tile image
            //
            ImageUnrecPtr col_image = Image::create();
            col_image->set(Image::OSG_RGBA_PF, xSize, ySize);
            //
            // Adapt the tile camera decorator boxes to the current tile
            //
            for (size_t i = 0; i < num_ports; ++i)
            {
                //
                // this tile does not fill the whole FBO - adjust to only render
                // to a part of it
                //
                decorators[i].get<2>()->setLeft  (0.f);
                decorators[i].get<2>()->setRight (xSize / float(winWidth));
                decorators[i].get<2>()->setBottom(0.f);
                decorators[i].get<2>()->setTop   (ySize / float(winHeight));

                TileCameraDecorator* decorator = decorators[i].get<0>();

                decorator->setSize( xPos / float(width),
                                    yPos / float(height),
                          (xPos + xSize) / float(width),
                          (yPos + ySize) / float(height) );

            }
            //
            // render the tile
            //
            mgr->update();
            win->renderNoFinish(mgr->getRenderAction());
            win->frameExit();
            win->deactivate ();

            //
            // Copy the image into the tile image stored for later processing
            //
            if(fbo)
            {
                RenderBuffer* grabber = dynamic_cast<RenderBuffer*>(fbo->getColorAttachments(0));

                if(grabber)
                {
                    grabber->getImage()->subImage(0, 0, 0, xSize, ySize, 1, col_image);
                }
            }

            vecColImages.push_back(col_image);
        }

        //
        // Write the image format header once
        //
        if (write_header) {
            write_header = false;
            if (!writePNMImagesHeader(vecColImages, width, height, stream)) break;
        }
        //
        // Write the current column
        //
        if (!writePNMImagesData(vecColImages, stream)) break;
        //
        // Forget the current column images
        //
        vecColImages.clear();
    }

    //
    // restore window and cleanup
    //
    for (size_t i = 0; i < num_ports; ++i) {
        win->subPortByObj(decorators[i].get<3>());

        Viewport* vp = win->getPort(i);
        vp->setCamera(decorators[i].get<0>()->getDecoratee());
        vp->setSize(0, 0, 1, 1);

        TileableBackground* tbg = dynamic_cast<TileableBackground*>(vp->getBackground());
        if (tbg)
            tbg->setTile(decorators[i].get<1>());
    }
}