//--------------------------------------------------------------------------------------------------
/// 
//--------------------------------------------------------------------------------------------------
void RimCellRangeFilter::defineEditorAttribute(const caf::PdmFieldHandle* field, QString uiConfigName, caf::PdmUiEditorAttribute * attribute)
{
    caf::PdmUiSliderEditorAttribute* myAttr = static_cast<caf::PdmUiSliderEditorAttribute*>(attribute);
    if (!myAttr || !m_parentContainer)
    {
        return;
    }

    RigGridBase* grid = selectedGrid();

    if (field == &startIndexI || field == &cellCountI)
    {
        myAttr->m_minimum = 1;
        myAttr->m_maximum = static_cast<int>(grid->cellCountI());
    }
    else if (field == &startIndexJ  || field == &cellCountJ)
    {
        myAttr->m_minimum = 1;
        myAttr->m_maximum = static_cast<int>(grid->cellCountJ());
    }
    else if (field == &startIndexK || field == &cellCountK)
    {
        myAttr->m_minimum = 1;
        myAttr->m_maximum = static_cast<int>(grid->cellCountK());
    }

    RigActiveCellInfo* actCellInfo = m_parentContainer->activeCellInfo();
    if (grid == m_parentContainer->mainGrid() && actCellInfo)
    {
        cvf::Vec3st min, max;
        actCellInfo->IJKBoundingBox(min, max);

        // Adjust to Eclipse indexing
        min.x() = min.x() + 1;
        min.y() = min.y() + 1;
        min.z() = min.z() + 1;

        max.x() = max.x() + 1;
        max.y() = max.y() + 1;
        max.z() = max.z() + 1;

        startIndexI.setUiName(QString("I Start (%1)").arg(min.x()));
        startIndexJ.setUiName(QString("J Start (%1)").arg(min.y()));
        startIndexK.setUiName(QString("K Start (%1)").arg(min.z()));
        cellCountI.setUiName(QString("  Width (%1)").arg(max.x() - min.x() + 1));
        cellCountJ.setUiName(QString("  Width (%1)").arg(max.y() - min.y() + 1));
        cellCountK.setUiName(QString("  Width (%1)").arg(max.z() - min.z() + 1));
    }
    else
    {
        startIndexI.setUiName(QString("I Start"));
        startIndexJ.setUiName(QString("J Start"));
        startIndexK.setUiName(QString("K Start"));
        cellCountI.setUiName(QString("  Width"));
        cellCountJ.setUiName(QString("  Width"));
        cellCountK.setUiName(QString("  Width"));
    }
}
//--------------------------------------------------------------------------------------------------
/// 
//--------------------------------------------------------------------------------------------------
void RimCellRangeFilter::computeAndSetValidValues()
{
    CVF_ASSERT(m_parentContainer);

    RigGridBase* grid = selectedGrid();
    if (grid && grid->cellCount() > 0 )
    {
        cellCountI = cvf::Math::clamp(cellCountI.v(),   1, static_cast<int>(grid->cellCountI()));
        startIndexI = cvf::Math::clamp(startIndexI.v(), 1, static_cast<int>(grid->cellCountI()));

        cellCountJ = cvf::Math::clamp(cellCountJ.v(),   1, static_cast<int>(grid->cellCountJ()));
        startIndexJ = cvf::Math::clamp(startIndexJ.v(), 1, static_cast<int>(grid->cellCountJ()));

        cellCountK = cvf::Math::clamp(cellCountK.v(),   1, static_cast<int>(grid->cellCountK()));
        startIndexK = cvf::Math::clamp(startIndexK.v(), 1, static_cast<int>(grid->cellCountK()));
    }
    this->updateIconState();
}
//--------------------------------------------------------------------------------------------------
/// 
//--------------------------------------------------------------------------------------------------
void RimCellRangeFilter::setDefaultValues()
{
    CVF_ASSERT(m_parentContainer);

    RigGridBase* grid = selectedGrid();

    RigActiveCellInfo* actCellInfo = m_parentContainer->activeCellInfo();
    if (grid == m_parentContainer->mainGrid() && actCellInfo)
    {
        cvf::Vec3st min, max;
        actCellInfo->IJKBoundingBox(min, max);

        // Adjust to Eclipse indexing
        min.x() = min.x() + 1;
        min.y() = min.y() + 1;
        min.z() = min.z() + 1;

        max.x() = max.x() + 1;
        max.y() = max.y() + 1;
        max.z() = max.z() + 1;

        startIndexI = static_cast<int>(min.x());
        startIndexJ = static_cast<int>(min.y());
        startIndexK = static_cast<int>(min.z());
        cellCountI = static_cast<int>(max.x() - min.x() + 1);
        cellCountJ = static_cast<int>(max.y() - min.y() + 1);
        cellCountK = static_cast<int>(max.z() - min.z() + 1);
    }
    else
    {
        startIndexI = 1;
        startIndexJ = 1;
        startIndexK = 1;
        cellCountI = static_cast<int>(grid->cellCountI() );
        cellCountJ = static_cast<int>(grid->cellCountJ() );
        cellCountK = static_cast<int>(grid->cellCountK() );
    }
}
示例#4
0
    bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>&  args, QDataStream& socketStream) override
    {
        RimEclipseCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args);
        size_t argGridIndex = args[2].toUInt();

        if (!rimCase || !rimCase->eclipseCaseData() || (argGridIndex >= rimCase->eclipseCaseData()->gridCount()) )
        {
            // No data available
            socketStream << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0;
            return true;
        }

        RigGridBase* rigGrid = rimCase->eclipseCaseData()->grid(argGridIndex);

        quint64 cellCount  = (quint64)rigGrid->cellCount();
        quint64 cellCountI = (quint64)rigGrid->cellCountI();
        quint64 cellCountJ = (quint64)rigGrid->cellCountJ();
        quint64 cellCountK = (quint64)rigGrid->cellCountK();

        socketStream << cellCount;
        socketStream << cellCountI;
        socketStream << cellCountJ;
        socketStream << cellCountK;

        size_t doubleValueCount = cellCount * 3;
        quint64 byteCount = doubleValueCount * sizeof(double);
        socketStream << byteCount;

        // This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is
        // defined by the ordering of the receiving NDArray
        //
        // See riGetCellCenters
        //
        //  dim_vector dv;
        //  dv.resize(4);
        //  dv(0) = cellCountI;
        //  dv(1) = cellCountJ;
        //  dv(2) = cellCountK;
        //  dv(3) = 3;

        size_t blockByteCount = cellCount * sizeof(double);
        std::vector<double> doubleValues(blockByteCount);

        for (int coordIdx = 0; coordIdx < 3; coordIdx++)
        {
            quint64 valueIndex = 0;

            for (size_t k = 0; k < cellCountK; k++)
            {
                for (size_t j = 0; j < cellCountJ; j++)
                {
                    for (size_t i = 0; i < cellCountI; i++)
                    {
                        size_t gridLocalCellIndex = rigGrid->cellIndexFromIJK(i, j, k);
                        cvf::Vec3d center = rigGrid->cell(gridLocalCellIndex).center();

                        convertVec3dToPositiveDepth(&center);

                        doubleValues[valueIndex++] = center[coordIdx];
                    }
                }
            }

            CVF_ASSERT(valueIndex == cellCount);

            RiaSocketTools::writeBlockData(server, server->currentClient(), (const char *)doubleValues.data(), blockByteCount);
        }

        return true;
    }
    virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>&  args, QDataStream& socketStream)
    {
        int caseId                = args[1].toInt();
        int gridIdx               = args[2].toInt();
        QString propertyName      = args[3];
        QString porosityModelName = args[4];
        
        RimCase*rimCase = server->findReservoir(caseId);
        if (rimCase == NULL)
        {
            server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: \n") + RiaSocketServer::tr("Could not find the case with ID: \"%1\"").arg(caseId));

            // No data available
            socketStream << (quint64)0 << (quint64)0 <<  (quint64)0  << (quint64)0 ;
            return true;
        }

        RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS;
        if (porosityModelName == "Fracture")
        {
            porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS;
        }

        size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T;

        if (gridIdx < 0  || rimCase->reservoirData()->gridCount() <= (size_t)gridIdx)
        {
            server->errorMessageDialog()->showMessage("ResInsight SocketServer: riGetGridProperty : \n"
                                                      "The gridIndex \"" + QString::number(gridIdx) + "\" does not point to an existing grid." );
        }
        else
        {
            // Find the requested data
            if (rimCase && rimCase->results(porosityModelEnum))
            {
                scalarResultIndex = rimCase->results(porosityModelEnum)->findOrLoadScalarResult(propertyName);
            }
        }

        if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
        {
            server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: \n") + RiaSocketServer::tr("Could not find the %1 model property named: \"%2\"").arg(porosityModelName).arg(propertyName));

            // No data available
            socketStream << (quint64)0 << (quint64)0 <<  (quint64)0  << (quint64)0 ;
            return true;
        }


        // Create a list of all the requested time steps

        std::vector<size_t> requestedTimesteps;

        if (args.size() <= 5)
        {
            // Select all
            for (size_t tsIdx = 0; tsIdx < rimCase->results(porosityModelEnum)->cellResults()->timeStepCount(scalarResultIndex); ++tsIdx)
            {
                requestedTimesteps.push_back(tsIdx);
            }
        }
        else
        {
            bool timeStepReadError = false;
            for (int argIdx = 5; argIdx < args.size(); ++argIdx)
            {
                bool conversionOk = false;
                int tsIdx = args[argIdx].toInt(&conversionOk);

                if (conversionOk)
                {
                    requestedTimesteps.push_back(tsIdx);
                }
                else
                {
                    timeStepReadError = true;
                }
            }

            if (timeStepReadError)
            {
                server->errorMessageDialog()->showMessage(RiaSocketServer::tr("ResInsight SocketServer: riGetGridProperty : \n")
                                                          + RiaSocketServer::tr("An error occured while interpreting the requested timesteps."));
            }

        }


        RigGridBase* rigGrid = rimCase->reservoirData()->grid(gridIdx);

        quint64 cellCountI = (quint64)rigGrid->cellCountI();
        quint64 cellCountJ = (quint64)rigGrid->cellCountJ();
        quint64 cellCountK = (quint64)rigGrid->cellCountK();

        socketStream << cellCountI;
        socketStream << cellCountJ;
        socketStream << cellCountK;

        // Write time step count

        quint64 timestepCount = (quint64)requestedTimesteps.size();
        socketStream << timestepCount;

        size_t doubleValueCount = cellCountI * cellCountJ * cellCountK * timestepCount * sizeof(double);
        std::vector<double> values(doubleValueCount);
        size_t valueIdx = 0;
        
        for (size_t tsIdx = 0; tsIdx < timestepCount; tsIdx++)
        {
            cvf::ref<cvf::StructGridScalarDataAccess> cellCenterDataAccessObject = rimCase->reservoirData()->dataAccessObject(rigGrid, porosityModelEnum, requestedTimesteps[tsIdx], scalarResultIndex);
            if (cellCenterDataAccessObject.isNull())
            {
                continue;
            }

            for (size_t cellIdx = 0; cellIdx < rigGrid->cellCount(); cellIdx++)
            {
                double cellValue = cellCenterDataAccessObject->cellScalar(cellIdx);
                if (cellValue == HUGE_VAL)
                {
                    cellValue = 0.0;
                }
                values[valueIdx++] = cellValue;
            }
        }

        server->currentClient()->write((const char *)values.data(), doubleValueCount);

        return true;
    }