示例#1
0
void rf313_paramranges()
{

  // C r e a t e   3 D   p d f 
  // -------------------------

  // Define observable (x,y,z)
  RooRealVar x("x","x",0,10) ;
  RooRealVar y("y","y",0,10) ;
  RooRealVar z("z","z",0,10) ;

  // Define 3 dimensional pdf
  RooRealVar z0("z0","z0",-0.1,1) ;
  RooPolynomial px("px","px",x,RooConst(0)) ;
  RooPolynomial py("py","py",y,RooConst(0)) ;
  RooPolynomial pz("pz","pz",z,z0) ;
  RooProdPdf pxyz("pxyz","pxyz",RooArgSet(px,py,pz)) ;



  // D e f i n e d   n o n - r e c t a n g u l a r   r e g i o n   R   i n   ( x , y , z ) 
  // -------------------------------------------------------------------------------------

  //
  // R = Z[0 - 0.1*Y^2] * Y[0.1*X - 0.9*X] * X[0 - 10]
  //

  // Construct range parameterized in "R" in y [ 0.1*x, 0.9*x ]
  RooFormulaVar ylo("ylo","0.1*x",x) ;
  RooFormulaVar yhi("yhi","0.9*x",x) ;
  y.setRange("R",ylo,yhi) ;

  // Construct parameterized ranged "R" in z [ 0, 0.1*y^2 ]
  RooFormulaVar zlo("zlo","0.0*y",y) ;
  RooFormulaVar zhi("zhi","0.1*y*y",y) ;
  z.setRange("R",zlo,zhi) ;



  // C a l c u l a t e   i n t e g r a l   o f   n o r m a l i z e d   p d f   i n   R 
  // ----------------------------------------------------------------------------------

  // Create integral over normalized pdf model over x,y,z in "R" region
  RooAbsReal* intPdf = pxyz.createIntegral(RooArgSet(x,y,z),RooArgSet(x,y,z),"R") ;

  // Plot value of integral as function of pdf parameter z0
  RooPlot* frame = z0.frame(Title("Integral of pxyz over x,y,z in region R")) ;
  intPdf->plotOn(frame) ;



  new TCanvas("rf313_paramranges","rf313_paramranges",600,600) ;
  gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;

  return ;
}
void Raa3S_Workspace(const char* name_pbpb="chad_ws_fits/centFits/ws_PbPbData_262548_263757_0cent10_0.0pt50.0_0.0y2.4.root", const char* name_pp="chad_ws_fits/centFits/ws_PPData_262157_262328_-1cent1_0.0pt50.0_0.0y2.4.root", const char* name_out="fitresult_combo.root"){

   //TFile File(filename);

   //RooWorkspace * ws = test_combine(name_pbpb, name_pp);

   TFile *f = new TFile("fitresult_combo_333.root") ;
   RooWorkspace * ws1 = (RooWorkspace*) f->Get("wcombo");

   //File.GetObject("wcombo", ws);
   ws1->Print();
   RooAbsData * data = ws1->data("data"); //dataOS, dataSS

   // RooDataSet * US_data = (RooDataSet*) data->reduce( "QQsign == QQsign::PlusMinus");
   // US_data->SetName("US_data");
   // ws->import(* US_data);
   // RooDataSet * hi_data = (RooDataSet*) US_data->reduce("dataCat == dataCat::hi");
   // hi_data->SetName("hi_data");
   // ws->import(* hi_data);
   // hi_data->Print();

   RooRealVar* raa3 = new RooRealVar("raa3","R_{AA}(#Upsilon (3S))",0.5,-1,1);
   RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",0);
   RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",1);
   RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*raa3, *leftEdge, *rightEdge));
   ws1->import(step);
   ws1->factory( "Uniform::flat(raa3)" );

   //pp Luminosities, Taa and efficiency ratios Systematics

   ws1->factory( "Taa_hi[5.662e-9]" );
   ws1->factory( "Taa_kappa[1.062]" ); // was 1.057
   ws1->factory( "expr::alpha_Taa('pow(Taa_kappa,beta_Taa)',Taa_kappa,beta_Taa[0,-5,5])" );
   ws1->factory( "prod::Taa_nom(Taa_hi,alpha_Taa)" );
   ws1->factory( "Gaussian::constr_Taa(beta_Taa,glob_Taa[0,-5,5],1)" );

   ws1->factory( "lumipp_hi[5.4]" );
   ws1->factory( "lumipp_kappa[1.037]" ); // was 1.06
   ws1->factory( "expr::alpha_lumipp('pow(lumipp_kappa,beta_lumipp)',lumipp_kappa,beta_lumipp[0,-5,5])" );
   ws1->factory( "prod::lumipp_nom(lumipp_hi,alpha_lumipp)" );
   ws1->factory( "Gaussian::constr_lumipp(beta_lumipp,glob_lumipp[0,-5,5],1)" );

   // ws->factory( "effRat1[1]" );
   // ws->factory( "effRat2[1]" );
   ws1->factory( "effRat3_hi[0.95]" );
   ws1->factory( "effRat_kappa[1.054]" );
   ws1->factory( "expr::alpha_effRat('pow(effRat_kappa,beta_effRat)',effRat_kappa,beta_effRat[0,-5,5])" );
   // ws->factory( "prod::effRat1_nom(effRat1_hi,alpha_effRat)" );
   ws1->factory( "Gaussian::constr_effRat(beta_effRat,glob_effRat[0,-5,5],1)" );
   // ws->factory( "prod::effRat2_nom(effRat2_hi,alpha_effRat)" );
   ws1->factory( "prod::effRat3_nom(effRat3_hi,alpha_effRat)" );
   //  
   ws1->factory("Nmb_hi[1.161e9]");
   ws1->factory("prod::denominator(Taa_nom,Nmb_hi)");
   ws1->factory( "expr::lumiOverTaaNmbmodified('lumipp_nom/denominator',lumipp_nom,denominator)");
   RooAbsReal *lumiOverTaaNmbmodified = ws1->function("lumiOverTaaNmbmodified"); //RooFormulaVar *lumiOverTaaNmbmodified = ws->function("lumiOverTaaNmbmodified");
   //  
   //  RooRealVar *raa1 = ws->var("raa1");
   //  RooRealVar* nsig1_pp = ws->var("nsig1_pp");
   //  RooRealVar* effRat1 = ws->function("effRat1_nom");
   //  RooRealVar *raa2 = ws->var("raa2");
   //  RooRealVar* nsig2_pp = ws->var("nsig2_pp");
   //  RooRealVar* effRat2 = ws->function("effRat2_nom");
   RooRealVar* nsig3_pp = ws1->var("R_{#frac{3S}{1S}}_pp"); //RooRealVar* nsig3_pp = ws->var("N_{#Upsilon(3S)}_pp");
   cout << nsig3_pp << endl;
   RooAbsReal* effRat3 = ws1->function("effRat3_nom"); //RooRealVar* effRat3 = ws->function("effRat3_nom");
   //  
   //  RooFormulaVar nsig1_hi_modified("nsig1_hi_modified", "@0*@1*@3/@2", RooArgList(*raa1, *nsig1_pp, *lumiOverTaaNmbmodified, *effRat1));
   //  ws->import(nsig1_hi_modified);
   //  RooFormulaVar nsig2_hi_modified("nsig2_hi_modified", "@0*@1*@3/@2", RooArgList(*raa2, *nsig2_pp, *lumiOverTaaNmbmodified, *effRat2));
   //  ws->import(nsig2_hi_modified);
   RooFormulaVar nsig3_hi_modified("nsig3_hi_modified", "@0*@1*@3/@2", RooArgList(*raa3, *nsig3_pp, *lumiOverTaaNmbmodified, *effRat3));
   ws1->import(nsig3_hi_modified);

   //  // background yield with systematics
   ws1->factory( "nbkg_hi_kappa[1.10]" );
   ws1->factory( "expr::alpha_nbkg_hi('pow(nbkg_hi_kappa,beta_nbkg_hi)',nbkg_hi_kappa,beta_nbkg_hi[0,-5,5])" );
   ws1->factory( "SUM::nbkg_hi_nom(alpha_nbkg_hi*bkgPdf_hi)" );
   ws1->factory( "Gaussian::constr_nbkg_hi(beta_nbkg_hi,glob_nbkg_hi[0,-5,5],1)" );
   RooAbsPdf* sig1S_hi = ws1->pdf("sig1S_hi"); //RooAbsPdf* sig1S_hi = ws->pdf("cbcb_hi");
   RooAbsPdf* sig2S_hi = ws1->pdf("sig2S_hi");
   RooAbsPdf* sig3S_hi = ws1->pdf("sig3S_hi");
   RooAbsPdf* LSBackground_hi = ws1->pdf("nbkg_hi_nom");
   RooRealVar* nsig1_hi = ws1->var("N_{#Upsilon(1S)}_hi");
   RooRealVar* nsig2_hi = ws1->var("R_{#frac{2S}{1S}}_hi");
   RooAbsReal* nsig3_hi = ws1->function("nsig3_hi_modified"); //RooFormulaVar* nsig3_hi = ws->function("nsig3_hi_modified");
   cout << nsig1_hi << " " << nsig2_hi << " " << nsig3_pp << endl;
   RooRealVar* norm_nbkg_hi = ws1->var("n_{Bkgd}_hi");

   RooArgList pdfs_hi( *sig1S_hi,*sig2S_hi,*sig3S_hi, *LSBackground_hi);
   RooArgList norms_hi(*nsig1_hi,*nsig2_hi,*nsig3_hi, *norm_nbkg_hi);

   ////////////////////////////////////////////////////////////////////////////////

   ws1->factory( "nbkg_pp_kappa[1.03]" );
   ws1->factory( "expr::alpha_nbkg_pp('pow(nbkg_pp_kappa,beta_nbkg_pp)',nbkg_pp_kappa,beta_nbkg_pp[0,-5,5])" );
   ws1->factory( "SUM::nbkg_pp_nom(alpha_nbkg_pp*bkgPdf_pp)" );
   ws1->factory( "Gaussian::constr_nbkg_pp(beta_nbkg_pp,glob_nbkg_pp[0,-5,5],1)" );
   RooAbsPdf* sig1S_pp = ws1->pdf("sig1S_pp"); //RooAbsPdf* sig1S_pp = ws1->pdf("cbcb_pp");
   RooAbsPdf* sig2S_pp = ws1->pdf("sig2S_pp");
   RooAbsPdf* sig3S_pp = ws1->pdf("sig3S_pp");
   RooAbsPdf* LSBackground_pp = ws1->pdf("nbkg_pp_nom");
   RooRealVar* nsig1_pp = ws1->var("N_{#Upsilon(1S)}_pp");
   RooRealVar* nsig2_pp = ws1->var("R_{#frac{2S}{1S}}_pp"); //RooRealVar* nsig2_pp = ws1->var("N_{#Upsilon(2S)}_pp");
   // RooRealVar* nsig3_pp = ws1->var("N_{#Upsilon(3S)}_pp");
   RooRealVar* norm_nbkg_pp = ws1->var("n_{Bkgd}_pp");

   RooArgList pdfs_pp( *sig1S_pp,*sig2S_pp,*sig3S_pp, *LSBackground_pp);
   RooArgList norms_pp( *nsig1_pp,*nsig2_pp,*nsig3_pp,*norm_nbkg_pp);

   RooAddPdf model_num("model_num", "model_num", pdfs_hi,norms_hi); 
   ws1->import(model_num);
   ws1->factory("PROD::model_hi(model_num, constr_nbkg_hi,constr_lumipp,constr_Taa,constr_effRat)");

   RooAddPdf model_den("model_den", "model_den", pdfs_pp,norms_pp); 
   ws1->import(model_den);
   ws1->factory("PROD::model_pp(model_den, constr_nbkg_pp)");

   ws1->factory("SIMUL::joint(dataCat,hi=model_hi,pp=model_pp)");



   /////////////////////////////////////////////////////////////////////
   RooRealVar * pObs = ws1->var("invariantMass"); // get the pointer to the observable
   RooArgSet obs("observables");
   obs.add(*pObs);
   obs.add( *ws1->cat("dataCat"));    
   //  /////////////////////////////////////////////////////////////////////
   ws1->var("glob_lumipp")->setConstant(true);
   ws1->var("glob_Taa")->setConstant(true);
   ws1->var("glob_effRat")->setConstant(true);
   ws1->var("glob_nbkg_pp")->setConstant(true);
   ws1->var("glob_nbkg_hi")->setConstant(true);
   RooArgSet globalObs("global_obs");
   globalObs.add( *ws1->var("glob_lumipp") );
   globalObs.add( *ws1->var("glob_Taa") );
   globalObs.add( *ws1->var("glob_effRat") );
   globalObs.add( *ws1->var("glob_nbkg_hi") );
   globalObs.add( *ws1->var("glob_nbkg_pp") );
   cout << "66666" << endl;

   // ws1->Print();

   RooArgSet poi("poi");
   poi.add( *ws1->var("raa3") );



   cout << "77777" << endl;
   // create set of nuisance parameters
   RooArgSet nuis("nuis");
   nuis.add( *ws1->var("beta_lumipp") );
   nuis.add( *ws1->var("beta_nbkg_hi") );
   nuis.add( *ws1->var("beta_nbkg_pp") );
   nuis.add( *ws1->var("beta_Taa") );
   nuis.add( *ws1->var("beta_effRat") );

   cout << "88888" << endl;
   ws1->var("#alpha_{CB}_hi")->setConstant(true);
   ws1->var("#alpha_{CB}_pp")->setConstant(true);
   ws1->var("#sigma_{CB1}_hi")->setConstant(true);
   ws1->var("#sigma_{CB1}_pp")->setConstant(true);
   ws1->var("#sigma_{CB2}/#sigma_{CB1}_hi")->setConstant(true);
   ws1->var("#sigma_{CB2}/#sigma_{CB1}_pp")->setConstant(true);
   //ws1->var("Centrality")->setConstant(true); //delete
   ws1->var("N_{#varUpsilon(1S)}_hi")->setConstant(true);
   ws1->var("N_{#varUpsilon(1S)}_pp")->setConstant(true);
   //ws1->var("N_{#Upsilon(2S)}_hi")->setConstant(true);
   //ws1->var("N_{#Upsilon(2S)}_pp")->setConstant(true);
   //ws1->var("N_{#Upsilon(3S)}_pp")->setConstant(true);

   ws1->var("R_{#frac{2S}{1S}}_hi")->setConstant(true); //new
   ws1->var("R_{#frac{2S}{1S}}_pp")->setConstant(true); //new
   ws1->var("R_{#frac{3S}{1S}}_hi")->setConstant(true); //new
   ws1->var("R_{#frac{3S}{1S}}_pp")->setConstant(true); //new

   ws1->var("Nmb_hi")->setConstant(true);
   // ws1->var("QQsign")->setConstant(true);
   ws1->var("Taa_hi")->setConstant(true);
   ws1->var("Taa_kappa")->setConstant(true);
   // ws1->var("beta_Taa")->setConstant(true);
   // ws1->var("beta_effRat")->setConstant(true);
   // ws1->var("beta_lumipp")->setConstant(true);
   // ws1->var("beta_nbkg_hi")->setConstant(true);
   // ws1->var("beta_nbkg_pp")->setConstant(true);
   // ws1->var("dataCat")->setConstant(true);
   ws1->var("decay_hi")->setConstant(true);
   ws1->var("decay_pp")->setConstant(true);
   ws1->var("effRat3_hi")->setConstant(true);
   ws1->var("effRat_kappa")->setConstant(true);
   // ws1->var("glob_Taa")->setConstant(true);
   // ws1->var("glob_effRat")->setConstant(true);
   // ws1->var("glob_lumipp")->setConstant(true);
   // ws1->var("glob_nbkg_hi")->setConstant(true);
   // ws1->var("glob_nbkg_pp")->setConstant(true);
   // ws1->var("invariantMass")->setConstant(true);
   ws1->var("leftEdge")->setConstant(true);
   ws1->var("lumipp_hi")->setConstant(true);
   ws1->var("lumipp_kappa")->setConstant(true);
   ws1->var("m_{ #varUpsilon(1S)}_hi")->setConstant(true); //ws1->var("mass1S_hi")->setConstant(true);
   ws1->var("m_{ #varUpsilon(1S)}_pp")->setConstant(true); //ws1->var("mass1S_pp")->setConstant(true);
   ws1->var("muMinusPt")->setConstant(true);
   ws1->var("muPlusPt")->setConstant(true);
   ws1->var("n_{Bkgd}_hi")->setConstant(true);
   ws1->var("n_{Bkgd}_pp")->setConstant(true);
   ws1->var("nbkg_hi_kappa")->setConstant(true);
   ws1->var("nbkg_pp_kappa")->setConstant(true);
   //ws1->var("n_{CB}")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   ws1->var("n_{CB}_hi")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   ws1->var("n_{CB}_pp")->setConstant(true); //ws1->var("n_{CB}")->setConstant(true); //ws1->var("npow")->setConstant(true);
   // ws1->var("raa3")->setConstant(true);
   ws1->var("rightEdge")->setConstant(true);
   ws1->var("sigmaFraction_hi")->setConstant(true);
   ws1->var("sigmaFraction_pp")->setConstant(true);
   ws1->var("turnOn_hi")->setConstant(true);
   ws1->var("turnOn_pp")->setConstant(true);
   ws1->var("dimuPt")->setConstant(true); //ws1->var("upsPt")->setConstant(true);
   ws1->var("dimuRapidity")->setConstant(true); //ws1->var("upsRapidity")->setConstant(true);
   ws1->var("vProb")->setConstant(true);
   ws1->var("width_hi")->setConstant(true);
   ws1->var("width_pp")->setConstant(true);
   // ws1->var("x3raw")->setConstant(true);
   //  RooArgSet fixed_again("fixed_again");
   //  fixed_again.add( *ws1->var("leftEdge") );
   //  fixed_again.add( *ws1->var("rightEdge") );
   //  fixed_again.add( *ws1->var("Taa_hi") );
   //  fixed_again.add( *ws1->var("Nmb_hi") );
   //  fixed_again.add( *ws1->var("lumipp_hi") );
   //  fixed_again.add( *ws1->var("effRat1_hi") );
   //  fixed_again.add( *ws1->var("effRat2_hi") );
   //  fixed_again.add( *ws1->var("effRat3_hi") );
   //  fixed_again.add( *ws1->var("nsig3_pp") );
   //  fixed_again.add( *ws1->var("nsig1_pp") );
   //  fixed_again.add( *ws1->var("nbkg_hi") );
   //  fixed_again.add( *ws1->var("alpha") );
   //  fixed_again.add( *ws1->var("nbkg_kappa") );
   //  fixed_again.add( *ws1->var("Taa_kappa") );
   //  fixed_again.add( *ws1->var("lumipp_kappa") );
   // fixed_again.add( *ws1->var("mean_hi") );
   // fixed_again.add( *ws1->var("mean_pp") );
   // fixed_again.add( *ws1->var("width_hi") );
   // fixed_again.add( *ws1->var("turnOn_hi") );
   // fixed_again.add( *ws1->var("bkg_a1_pp") );
   // fixed_again.add( *ws1->var("bkg_a2_pp") );
   // fixed_again.add( *ws1->var("decay_hi") );
   // fixed_again.add( *ws1->var("raa1") );
   // fixed_again.add( *ws1->var("raa2") );
   //  fixed_again.add( *ws1->var("nsig2_pp") );
   // fixed_again.add( *ws1->var("sigma1") );
   //  fixed_again.add( *ws1->var("nbkg_pp") );
   // fixed_again.add( *ws1->var("npow") );
   // fixed_again.add( *ws1->var("muPlusPt") );
   // fixed_again.add( *ws1->var("muMinusPt") );
   // fixed_again.add( *ws1->var("mscale_hi") );
   // fixed_again.add( *ws1->var("mscale_pp") );
   //  
   // ws1->Print();
   cout << "99999" << endl;

   // create signal+background Model Config
   RooStats::ModelConfig sbHypo("SbHypo");
   sbHypo.SetWorkspace( *ws1 );
   sbHypo.SetPdf( *ws1->pdf("joint") );
   sbHypo.SetObservables( obs );
   sbHypo.SetGlobalObservables( globalObs );
   sbHypo.SetParametersOfInterest( poi );
   sbHypo.SetNuisanceParameters( nuis );
   sbHypo.SetPriorPdf( *ws1->pdf("step") ); // this is optional

   // ws1->Print();
   /////////////////////////////////////////////////////////////////////
   RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(10) );
   cout << "111111" << endl;
   RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
   cout << "444444" << endl;
   RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,0.2),Title("LL and profileLL in raa3"));
   cout << "222222" << endl;
   pNll->plotOn(framepoi,ShiftToZero());
   cout << "333333" << endl;
   
   RooAbsReal * pProfile = pNll->createProfile( globalObs ); // do not profile global observables
   pProfile->getVal(); // this will do fit and set POI and nuisance parameters to fitted values
   pProfile->plotOn(framepoi,LineColor(kRed));
   framepoi->SetMinimum(0);
   framepoi->SetMaximum(3);
   TCanvas *cpoi = new TCanvas();
   cpoi->cd(); framepoi->Draw();
   cpoi->SaveAs("cpoi.pdf");

   ((RooRealVar *)poi.first())->setMin(0.);
   RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance");
   // pPoiAndNuisance->add(*sbHypo.GetNuisanceParameters());
   // pPoiAndNuisance->add(*sbHypo.GetParametersOfInterest());
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   sbHypo.SetSnapshot(*pPoiAndNuisance);

   RooPlot* xframeSB = pObs->frame(Title("SBhypo"));
   data->plotOn(xframeSB,Cut("dataCat==dataCat::hi"));
   RooAbsPdf *pdfSB = sbHypo.GetPdf();
   RooCategory *dataCat = ws1->cat("dataCat");
   pdfSB->plotOn(xframeSB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data));
   TCanvas *c1 = new TCanvas();
   c1->cd(); xframeSB->Draw();
   c1->SaveAs("c1.pdf");

   delete pProfile;
   delete pNll;
   delete pPoiAndNuisance;
   ws1->import( sbHypo );
   /////////////////////////////////////////////////////////////////////
   RooStats::ModelConfig bHypo = sbHypo;
   bHypo.SetName("BHypo");
   bHypo.SetWorkspace(*ws1);
   pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(2) );
   RooArgSet poiAndGlobalObs("poiAndGlobalObs");
   poiAndGlobalObs.add( poi );
   poiAndGlobalObs.add( globalObs );
   pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables
   ((RooRealVar *)poi.first())->setVal( 0 );  // set raa3=0 here
   pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
   pPoiAndNuisance = new RooArgSet( "poiAndNuisance" );
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   bHypo.SetSnapshot(*pPoiAndNuisance);

   RooPlot* xframeB = pObs->frame(Title("Bhypo"));
   data->plotOn(xframeB,Cut("dataCat==dataCat::hi"));
   RooAbsPdf *pdfB = bHypo.GetPdf();
   pdfB->plotOn(xframeB,Slice(*dataCat,"hi"),ProjWData(*dataCat,*data));
   TCanvas *c2 = new TCanvas();
   c2->cd(); xframeB->Draw();
   c2->SaveAs("c2.pdf");

   delete pProfile;
   delete pNll;
   delete pPoiAndNuisance;

   // import model config into workspace
   bHypo.SetWorkspace(*ws1);
   ws1->import( bHypo );
   /////////////////////////////////////////////////////////////////////
   ws1->Print();
   bHypo.Print();
   sbHypo.Print();

   // save workspace to file
   ws1 -> SaveAs(name_out);

   return;
}
示例#3
0
void rf105_funcbinding()
{

   // B i n d   T M a t h : : E r f   C   f u n c t i o n
   // ---------------------------------------------------

   // Bind one-dimensional TMath::Erf function as RooAbsReal function
   RooRealVar x("x","x",-3,3) ;
   RooAbsReal* errorFunc = bindFunction("erf",TMath::Erf,x) ;

   // Print erf definition
   errorFunc->Print() ;

   // Plot erf on frame 
   RooPlot* frame1 = x.frame(Title("TMath::Erf bound as RooFit function")) ;
   errorFunc->plotOn(frame1) ;


   // B i n d   R O O T : : M a t h : : b e t a _ p d f   C   f u n c t i o n
   // -----------------------------------------------------------------------

   // Bind pdf ROOT::Math::Beta with three variables as RooAbsPdf function
   RooRealVar x2("x2","x2",0,0.999) ;
   RooRealVar a("a","a",5,0,10) ;
   RooRealVar b("b","b",2,0,10) ;
   RooAbsPdf* beta = bindPdf("beta",ROOT::Math::beta_pdf,x2,a,b) ;

   // Perf beta definition
   beta->Print() ;

   // Generate some events and fit
   RooDataSet* data = beta->generate(x2,10000) ;
   beta->fitTo(*data) ;

   // Plot data and pdf on frame
   RooPlot* frame2 = x2.frame(Title("ROOT::Math::Beta bound as RooFit pdf")) ;
   data->plotOn(frame2) ;
   beta->plotOn(frame2) ;



   // B i n d   R O O T   T F 1   a s   R o o F i t   f u n c t i o n
   // ---------------------------------------------------------------

   // Create a ROOT TF1 function
   TF1 *fa1 = new TF1("fa1","sin(x)/x",0,10);

   // Create an observable 
   RooRealVar x3("x3","x3",0.01,20) ;

   // Create binding of TF1 object to above observable
   RooAbsReal* rfa1 = bindFunction(fa1,x3) ;

   // Print rfa1 definition
   rfa1->Print() ;

   // Make plot frame in observable, plot TF1 binding function
   RooPlot* frame3 = x3.frame(Title("TF1 bound as RooFit function")) ;
   rfa1->plotOn(frame3) ;



   TCanvas* c = new TCanvas("rf105_funcbinding","rf105_funcbinding",1200,400) ;
   c->Divide(3) ;
   c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.6) ; frame1->Draw() ;
   c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.6) ; frame2->Draw() ;
   c->cd(3) ; gPad->SetLeftMargin(0.15) ; frame3->GetYaxis()->SetTitleOffset(1.6) ; frame3->Draw() ;

}
示例#4
0
文件: LL.C 项目: bellan/VVXAnalysis
void LL(){

  //y0 = 0.000135096401209 sigma_y0 = 0.000103896581837 x0 = 0.000446013873443 sigma_x0 =1.81384394011e-06
  //0.014108652249 0.0168368471049 0.0219755396247 0.000120423865262 1.5575931164 1.55759310722 3.41637854038
  //0.072569437325 0.084063541977 0.0376693978906 0.000284216132439 0.51908074913 0.519080758095 1.12037749267
 // double d = 0.014108652249;
 //  double sd = 0.0168368471049;
 //  double mc = 0.0219755396247;
 //  double smc = 0.000120423865262;
 //  double r0 = d/mc;

  double d = 0.072569437325;
  double sd =  0.084063541977;
  double mc =  0.0376693978906;
  double smc =  0.00028421613243;
  double r0 = d/mc;

  RooRealVar x("x","x",mc*0.9,mc*1.1);
  RooRealVar x0("x0","x0",mc);
  RooRealVar sx("sx","sx",smc);

  RooRealVar r("r","r",r0,0.,5.);
  RooRealVar y0("y0","y0",d); 
  RooRealVar sy("sy","sy",sd); 
  
  RooProduct rx("rx","rx",RooArgList(r,x));

  RooGaussian g1("g1","g1",x,x0,sx);
  RooGaussian g2("g2","g2",rx,y0,sy);

  RooProdPdf LL("LL","LL",g1,g2);

  RooArgSet obs(x0,y0); //observables
  RooArgSet poi(r); //parameters of interest
  RooDataSet data("data", "data", obs);
  data.add(obs); //actually add the data


  RooFitResult* res = LL.fitTo(data,RooFit::Minos(poi),RooFit::Save(),RooFit::Hesse(false));
  if(res->status()==0) {
    r.Print();
    x.Print();
    cout << r.getErrorLo() << " " << r.getErrorHi() << endl;
  } else {
    cout << "Likelihood maximization failed" << endl;
  }
  
  RooAbsReal* nll = LL.createNLL(data); 
  RooPlot* frame = r.frame();
  RooAbsReal* pll = nll->createProfile(poi);
  pll->plotOn(frame);//,RooFit::LineColor(ROOT::kRed));
  frame->Draw();

  r.setVal(0.);
  cout << pll->getVal() << endl; 

  return;
    
    


}
int DiagnosisMacro(int Nbins = 10, int Nsigma = 10, int CPUused = 1, TString Filename = "FIT_DATA_Psi2SJpsi_PPPrompt_Bkg_SecondOrderChebychev_pt65300_rap016_cent0200_262620_263757.root", TString Outputdir = "./")
//Nbins: Number of points for which to calculate profile likelihood. Time required is about (1/CPU) minutes per point per parameter. 0 means do plain likelihood only
//Nsigma: The range in which the scan is performed (value-Nsigma*sigma, value+Nsigma*sigma)
//CPUused: anything larger than 1 causes weird fit results on my laptop, runs fine on lxplus with more (16)

{
    // R e a d   w o r k s p a c e   f r o m   f i l e
    // -----------------------------------------------
    // Open input file with workspace

    //Filename = "FIT_DATA_Psi2SJpsi_PP_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev2_pt6590_rap016_cent0200.root";
    //Filename = "FIT_DATA_Psi2SJpsi_PbPb_Jpsi_DoubleCrystalBall_Psi2S_DoubleCrystalBall_Bkg_Chebychev1_pt6590_rap016_cent0200.root";

    TFile *f = new TFile(Filename);
    // Retrieve workspace from file
    RooWorkspace* w = (RooWorkspace*)f->Get("workspace");

    // Retrieve x,model and data from workspace
    RooRealVar* x = w->var("invMass");
    RooAbsPdf* model = w->pdf("simPdf_syst");
    if (model == 0) {
        model = w->pdf("simPdf");
    }
    if (model == 0) {
        model = w->pdf("pdfMASS_Tot_PP");
    }
    if (model == 0) {
        model = w->pdf("pdfMASS_Tot_PbPb");
    }
    if (model == 0) {
        cout << "[ERROR] pdf failed to load from the workspace" << endl;
        return false;
    }

    RooAbsData* data = w->data("dOS_DATA");
    if (data == 0) {
        data = w->data("dOS_DATA_PP");
    }
    if (data == 0) {
        data = w->data("dOS_DATA_PbPb");
    }
    if (data == 0) {
        cout << "[ERROR] data failed to load from the workspace" << endl;
        return false;
    }

    // Print structure of composite p.d.f.
    model->Print("t");

    /*
    // P l o t   m o d e l
    // ---------------------------------------------------------
    // Plot data and PDF overlaid
    RooPlot* xframe = x->frame(Title("J/psi Model and Data"));
    data->plotOn(xframe);
    model->plotOn(xframe);

    // Draw the frame on the canvas
    TCanvas* c2 = new TCanvas("PlotModel", "PlotModel", 1000, 1000);
    gPad->SetLeftMargin(0.15);
    xframe->GetYaxis()->SetTitleOffset(2.0);
    xframe->Draw();//*/

    ///// Check parameters

    RooArgSet* paramSet1 = model->getDependents(data);
    paramSet1->Print("v");  // Just check
    RooArgSet* paramSet2 = model->getParameters(data);
    paramSet2->Print("v");
    int Nparams = paramSet2->getSize();
    cout << "Number of parameters: " << Nparams<<endl<<endl;


    // C o n s t r u c t   p l a i n   l i k e l i h o o d
    // ---------------------------------------------------
    // Construct unbinned likelihood
    RooAbsReal* nll = model->createNLL(*data, NumCPU(CPUused));
    // Minimize likelihood w.r.t all parameters before making plots
    RooMinuit(*nll).migrad();


    //////////////////////////////////////////////////////

    ///////////////////   L O O P   O V E R   P A R A M E T E R S

    /////////////////////////////////////////////////////

    /// Set up loop over parameters
    TString ParamName;
    double ParamValue;
    double ParamError;
    double ParamLimitLow;
    double ParamLimitHigh;
    double FitRangeLow;
    double FitRangeHigh;
    RooRealVar* vParam;
    int counter = 0;

    // Loop start
    TIterator* iter = paramSet2->createIterator();
    TObject* var = iter->Next();
    while (var != 0) {
        counter++;
        ParamName = var->GetName();
        vParam = w->var(ParamName);
        ParamValue = vParam->getVal();
        ParamError = vParam->getError();
        ParamLimitLow = vParam->getMin();
        ParamLimitHigh = vParam->getMax();
        cout << ParamName << " has value " << ParamValue << " with error: " << ParamError << " and limits: " << ParamLimitLow << " to " << ParamLimitHigh << endl << endl;

        if (ParamError == 0) {  //Skipping fixed parameters
            cout << "Parameter was fixed, skipping its fitting" << endl;
            cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl;
            var = iter->Next();
            continue;
        }

        // determining fit range: Nsigma sigma on each side unless it would be outside of parameter limits
        if ((ParamValue - Nsigma * ParamError) > ParamLimitLow) {
            FitRangeLow = (ParamValue - Nsigma * ParamError);
        }
        else {
            FitRangeLow = ParamLimitLow;
        }

        if ((ParamValue + Nsigma * ParamError) < ParamLimitHigh) {
            FitRangeHigh = (ParamValue + Nsigma * ParamError);
        }
        else {
            FitRangeHigh = ParamLimitHigh;
        }


        // P l o t    p l a i n   l i k e l i h o o d   a n d   C o n s t r u c t   p r o f i l e   l i k e l i h o o d
        // ---------------------------------------------------
        RooPlot* frame1;
        RooAbsReal* pll=NULL;

        if (Nbins != 0) {
            frame1 = vParam->frame(Bins(Nbins), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data())));
            nll->plotOn(frame1, ShiftToZero());

            pll = nll->createProfile(*vParam);
            // Plot the profile likelihood
            pll->plotOn(frame1, LineColor(kRed), RooFit::Precision(-1));
        }
        else { //Skip profile likelihood
            frame1 = vParam->frame(Bins(10), Range(FitRangeLow, FitRangeHigh), Title(TString::Format("LL and profileLL in %s", ParamName.Data())));
            nll->plotOn(frame1, ShiftToZero());
        }

        // D r a w   a n d   s a v e   p l o t s
        // -----------------------------------------------------------------------

        // Adjust frame maximum for visual clarity
        frame1->SetMinimum(0);
        frame1->SetMaximum(20);

        TCanvas* c = new TCanvas("CLikelihoodResult", "CLikelihoodResult", 800, 600);
        c->cd(1);
        gPad->SetLeftMargin(0.15);
        frame1->GetYaxis()->SetTitleOffset(1.4);
        frame1->Draw();
        TLegend* leg = new TLegend(0.70, 0.70, 0.95, 0.88, "");
        leg->SetFillColor(kWhite);
        leg->SetBorderSize(0);
        leg->SetTextSize(0.035);
        TLegendEntry *le1 = leg->AddEntry(nll, "Plain likelihood", "l");
        le1->SetLineColor(kBlue);
        le1->SetLineWidth(3);
        TLegendEntry *le2 = leg->AddEntry(pll, "Profile likelihood", "l");
        le2->SetLineColor(kRed);
        le2->SetLineWidth(3);
        leg->Draw("same");

        //Save plot
        TString StrippedName = TString(Filename(Filename.Last('/')+1,Filename.Length()));
        StrippedName = StrippedName.ReplaceAll(".root","");
        cout << StrippedName << endl;
        gSystem->mkdir(Form("%s/root/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/root/%s/Likelihood_scan_%s.root", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));
        gSystem->mkdir(Form("%s/pdf/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/pdf/%s/Likelihood_scan_%s.pdf", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));
        gSystem->mkdir(Form("%s/png/%s", Outputdir.Data(), StrippedName.Data()), kTRUE);
        c->SaveAs(Form("%s/png/%s/Likelihood_scan_%s.png", Outputdir.Data(), StrippedName.Data(), ParamName.Data()));


        delete c;
        delete frame1;
        if (pll) delete pll;

        cout << endl << "DONE WITH " << counter << " PARAMETER OUT OF " << Nparams << endl << endl;
        //if (counter == 2){ break; } //Exit - for testing
        var = iter->Next();
    }  // End of the loop

    return true;
}
RooWorkspace* makeInvertedANFit(TTree* tree, float forceSigma=-1, bool constrainMu=false, float forceMu=-1) {
  RooWorkspace *ws = new RooWorkspace("ws","");

  std::vector< TString (*)(TString, RooRealVar&, RooWorkspace&) > bkgPdfList;
  bkgPdfList.push_back(makeSingleExp);
  bkgPdfList.push_back(makeDoubleExp);
#if DEBUG==0
  //bkgPdfList.push_back(makeTripleExp);
  bkgPdfList.push_back(makeModExp);
  bkgPdfList.push_back(makeSinglePow);
  bkgPdfList.push_back(makeDoublePow);
  bkgPdfList.push_back(makePoly2);
  bkgPdfList.push_back(makePoly3);
#endif



  RooRealVar mgg("mgg","m_{#gamma#gamma}",103,160,"GeV");
  mgg.setBins(38);

  mgg.setRange("sideband_low", 103,120);
  mgg.setRange("sideband_high",131,160);
  mgg.setRange("signal",120,131);

  RooRealVar MR("MR","",0,3000,"GeV");
  MR.setBins(60);
  
  RooRealVar Rsq("t1Rsq","",0,1,"GeV");
  Rsq.setBins(20);

  RooRealVar hem1_M("hem1_M","",-1,2000,"GeV");
  hem1_M.setBins(40);

  RooRealVar hem2_M("hem2_M","",-1,2000,"GeV");
  hem2_M.setBins(40);

  RooRealVar ptgg("ptgg","p_{T}^{#gamma#gamma}",0,500,"GeV");
  ptgg.setBins(50);

  RooDataSet data("data","",tree,RooArgSet(mgg,MR,Rsq,hem1_M,hem2_M,ptgg));

  RooDataSet* blind_data = (RooDataSet*)data.reduce("mgg<121 || mgg>130");

  std::vector<TString> tags;
  //fit many different background models
  for(auto func = bkgPdfList.begin(); func != bkgPdfList.end(); func++) {
    TString tag = (*func)("bonly",mgg,*ws);
    tags.push_back(tag);
    ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    RooFitResult* bres = ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    bres->SetName(tag+"_bonly_fitres");
    ws->import(*bres);

    //make blinded fit
    RooPlot *fmgg_b = mgg.frame();
    blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
    TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
    blindBox.SetFillColor(kGray);
    fmgg_b->addObject(&blindBox);
    ws->pdf("bonly_"+tag+"_ext")->plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
    fmgg_b->SetName(tag+"_blinded_frame");
    ws->import(*fmgg_b);
    delete fmgg_b;
    

    //set all the parameters constant
    RooArgSet* vars = ws->pdf("bonly_"+tag)->getVariables();
    RooFIter iter = vars->fwdIterator();
    RooAbsArg* a;
    while( (a = iter.next()) ){
      if(string(a->GetName()).compare("mgg")==0) continue;
      static_cast<RooRealVar*>(a)->setConstant(kTRUE);
    }

    //make the background portion of the s+b fit
    (*func)("b",mgg,*ws);

    RooRealVar sigma(tag+"_s_sigma","",5,0,100);
    if(forceSigma!=-1) {
      sigma.setVal(forceSigma);
      sigma.setConstant(true);
    }
    RooRealVar mu(tag+"_s_mu","",126,120,132);
    if(forceMu!=-1) {
      mu.setVal(forceMu);
      mu.setConstant(true);
    }
    RooGaussian sig(tag+"_sig_model","",mgg,mu,sigma);
    RooRealVar Nsig(tag+"_sb_Ns","",5,0,100);
    RooRealVar Nbkg(tag+"_sb_Nb","",100,0,100000);
    

    RooRealVar HiggsMass("HiggsMass","",125.1);
    RooRealVar HiggsMassError("HiggsMassError","",0.24);
    RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);


    RooAddPdf fitModel(tag+"_sb_model","",RooArgList( *ws->pdf("b_"+tag), sig ),RooArgList(Nbkg,Nsig));

    RooFitResult* sbres;
    RooAbsReal* nll;
    if(constrainMu) {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    } else {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
    }
    sbres->SetName(tag+"_sb_fitres");
    ws->import(*sbres);
    ws->import(fitModel);

    RooPlot *fmgg = mgg.frame();
    data.plotOn(fmgg);
    fitModel.plotOn(fmgg);
    ws->pdf("b_"+tag+"_ext")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
    fmgg->SetName(tag+"_frame");
    ws->import(*fmgg);
    delete fmgg;


    RooMinuit(*nll).migrad();

    RooPlot *fNs = Nsig.frame(0,25);
    fNs->SetName(tag+"_Nsig_pll");
    RooAbsReal *pll = nll->createProfile(Nsig);
    //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
    pll->plotOn(fNs);
    ws->import(*fNs);

    delete fNs;

    RooPlot *fmu = mu.frame(125,132);
    fmu->SetName(tag+"_mu_pll");
    RooAbsReal *pll_mu = nll->createProfile(mu);
    pll_mu->plotOn(fmu);
    ws->import(*fmu);

    delete fmu;

  }

  RooArgSet weights("weights");
  RooArgSet pdfs_bonly("pdfs_bonly");
  RooArgSet pdfs_b("pdfs_b");

  RooRealVar minAIC("minAIC","",1E10);
  //compute AIC stuff
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooAbsPdf *p_bonly = ws->pdf("bonly_"+*t);
    RooAbsPdf *p_b = ws->pdf("b_"+*t);
    RooFitResult *sb = (RooFitResult*)ws->obj(*t+"_bonly_fitres");
    RooRealVar k(*t+"_b_k","",p_bonly->getParameters(RooArgSet(mgg))->getSize());
    RooRealVar nll(*t+"_b_minNll","",sb->minNll());
    RooRealVar Npts(*t+"_b_N","",blind_data->sumEntries());
    RooFormulaVar AIC(*t+"_b_AIC","2*@0+2*@1+2*@1*(@1+1)/(@2-@1-1)",RooArgSet(nll,k,Npts));
    ws->import(AIC);
    if(AIC.getVal() < minAIC.getVal()) {
      minAIC.setVal(AIC.getVal());
    }
    //aicExpSum+=TMath::Exp(-0.5*AIC.getVal()); //we will need this precomputed  for the next step
    pdfs_bonly.add(*p_bonly);
    pdfs_b.add(*p_b);
  }
  ws->import(minAIC);
  //compute the AIC weight
  float aicExpSum=0;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    aicExpSum+=TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal())); //we will need this precomputed  for the next step    
  }
  std::cout << "aicExpSum: " << aicExpSum << std::endl;

  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = new RooRealVar(*t+"_b_AICWeight","",TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal()))/aicExpSum);
    if( TMath::IsNaN(AICw->getVal()) ) {AICw->setVal(0);}
    ws->import(*AICw);
    std::cout << *t << ":  " << AIC->getVal()-minAIC.getVal() << "    " << AICw->getVal() << std::endl;
    weights.add(*AICw);
  }
  RooAddPdf bonly_AIC("bonly_AIC","",pdfs_bonly,weights);
  RooAddPdf b_AIC("b_AIC","",pdfs_b,weights);

  //b_AIC.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //RooFitResult* bres = b_AIC.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //bres->SetName("AIC_b_fitres");
  //ws->import(*bres);

  //make blinded fit
  RooPlot *fmgg_b = mgg.frame(RooFit::Range("sideband_low,sideband_high"));
  blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
  TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
  blindBox.SetFillColor(kGray);
  fmgg_b->addObject(&blindBox);
  bonly_AIC.plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
  fmgg_b->SetName("AIC_blinded_frame");
  ws->import(*fmgg_b);
  delete fmgg_b;
    
#if 1

  RooRealVar sigma("AIC_s_sigma","",5,0,100);
  if(forceSigma!=-1) {
    sigma.setVal(forceSigma);
    sigma.setConstant(true);
  }
  RooRealVar mu("AIC_s_mu","",126,120,132);
  if(forceMu!=-1) {
    mu.setVal(forceMu);
    mu.setConstant(true);
  }
  RooGaussian sig("AIC_sig_model","",mgg,mu,sigma);
  RooRealVar Nsig("AIC_sb_Ns","",5,0,100);
  RooRealVar Nbkg("AIC_sb_Nb","",100,0,100000);
  
  
  RooRealVar HiggsMass("HiggsMass","",125.1);
  RooRealVar HiggsMassError("HiggsMassError","",0.24);
  RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);
  
  
  RooAddPdf fitModel("AIC_sb_model","",RooArgList( b_AIC, sig ),RooArgList(Nbkg,Nsig));

  RooFitResult* sbres;
  RooAbsReal *nll;

  if(constrainMu) {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
  } else {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
  }

  assert(nll!=0);
  
  sbres->SetName("AIC_sb_fitres");
  ws->import(*sbres);
  ws->import(fitModel);
  
  RooPlot *fmgg = mgg.frame();
  data.plotOn(fmgg);
  fitModel.plotOn(fmgg);
  ws->pdf("b_AIC")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
  fmgg->SetName("AIC_frame");
  ws->import(*fmgg);
  delete fmgg;

  RooMinuit(*nll).migrad();
  
  RooPlot *fNs = Nsig.frame(0,25);
  fNs->SetName("AIC_Nsig_pll");
  RooAbsReal *pll = nll->createProfile(Nsig);
  //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
  pll->plotOn(fNs);
  ws->import(*fNs);
  delete fNs;


  RooPlot *fmu = mu.frame(125,132);
  fmu->SetName("AIC_mu_pll");
  RooAbsReal *pll_mu = nll->createProfile(mu);
  pll_mu->plotOn(fmu);
  ws->import(*fmu);

  delete fmu;

  std::cout << "min AIC: " << minAIC.getVal() << std::endl;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = ws->var(*t+"_b_AICWeight");
    RooRealVar* k = ws->var(*t+"_b_k");
    printf("%s & %0.0f & %0.2f & %0.2f \\\\\n",t->Data(),k->getVal(),AIC->getVal()-minAIC.getVal(),AICw->getVal());
    //std::cout << k->getVal() << " " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl;
  }
#endif
  return ws;
}
示例#7
0
void combinedWorkspace_4WS(const char* name_pbpb_pass="******", const char* name_pbpb_fail="fitresult_pbpb_fail.root", const char* name_pp_pass="******", const char* name_pp_fail="fitresult_pp_fail.root", const char* name_out="fitresult_combo.root", const float systval = 0., const char* subDirName ="wsTest", int nCPU=2){
   // subdir: Directory to save workspaces under currentPATH/CombinedWorkspaces/subDir/

   // set things silent
   gErrorIgnoreLevel=kError;
   RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR);
  
   bool dosyst = (systval > 0.);

   TString nameOut(name_out);
  
   RooWorkspace * ws = test_combine_4WS(name_pbpb_pass, name_pp_pass, name_pbpb_fail, name_pp_fail, false, nCPU);
   RooAbsData * data = ws->data("dOS_DATA");

   RooRealVar* RFrac2Svs1S_PbPbvsPP_P = ws->var("RFrac2Svs1S_PbPbvsPP_P");
   RooRealVar* leftEdge = new RooRealVar("leftEdge","leftEdge",-10);
   RooRealVar* rightEdge = new RooRealVar("rightEdge","rightEdge",10);
   RooGenericPdf step("step", "step", "(@0 >= @1) && (@0 < @2)", RooArgList(*RFrac2Svs1S_PbPbvsPP_P, *leftEdge, *rightEdge));
   ws->import(step);
   ws->factory( "Uniform::flat(RFrac2Svs1S_PbPbvsPP_P)" );

   // systematics
   if (dosyst) {
     ws->factory( Form("kappa_syst[%f]",systval) );
     ws->factory( "expr::alpha_syst('kappa_syst*beta_syst',kappa_syst,beta_syst[0,-5,5])" );
     ws->factory( "Gaussian::constr_syst(beta_syst,glob_syst[0,-5,5],1)" );
     
     // add systematics into the double ratio
     ws->factory( "expr::RFrac2Svs1S_PbPbvsPP_P_syst('@0+@1',RFrac2Svs1S_PbPbvsPP_P,alpha_syst)" );
     
     // build the pbpb pdf
     RooRealVar* effjpsi_pp_P = (RooRealVar*)ws->var("effjpsi_pp_P");
     RooRealVar* effpsip_pp_P = (RooRealVar*)ws->var("effpsip_pp_P");
     RooRealVar* effjpsi_pp_NP = (RooRealVar*)ws->var("effjpsi_pp_NP");
     Double_t Npsi2SPbPbPass = npsip_pbpb_pass_from_doubleratio_prompt(ws, RooArgList(*effjpsi_pp_P,*effpsip_pp_P,*effjpsi_pp_NP),true); // Create and import N_Psi2S_PbPb_pass_syst
     
     ws->factory( "SUM::pdfMASS_Tot_PbPb_pass_syst(N_Jpsi_PbPb_pass * pdfMASS_Jpsi_PbPb_pass, N_Psi2S_PbPb_pass_syst * pdfMASS_Psi2S_PbPb_pass, N_Bkg_PbPb_pass * pdfMASS_Bkg_PbPb_pass)" );
     ws->factory( "PROD::pdfMASS_Tot_PbPb_pass_constr(pdfMASS_Tot_PbPb_pass_syst,constr_syst)" );
     
     // build the combined pdf
     ws->factory("SIMUL::simPdf_syst_noconstr(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass_syst,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)");
     RooSimultaneous *simPdf = (RooSimultaneous*) ws->pdf("simPdf_syst_noconstr");
     RooGaussian *constr_syst = (RooGaussian*) ws->pdf("constr_syst");
     RooProdPdf *simPdf_constr = new RooProdPdf("simPdf_syst","simPdf_syst",RooArgSet(*simPdf,*constr_syst));
     ws->import(*simPdf_constr);
     
   } else {
      ws->factory("SIMUL::simPdf_syst(sample,PbPb_pass=pdfMASS_Tot_PbPb_pass,PbPb_fail=pdfMASS_Tot_PbPb_fail,PP_pass=pdfMASS_Tot_PP_pass,PP_fail=pdfMASS_Tot_PP_fail)");
   }

   ws->Print();

   if (dosyst) ws->var("beta_syst")->setConstant(kFALSE);


   /////////////////////////////////////////////////////////////////////
   RooRealVar * pObs = ws->var("invMass"); // get the pointer to the observable
   RooArgSet obs("observables");
   obs.add(*pObs);
   obs.add( *ws->cat("sample"));    
   //  /////////////////////////////////////////////////////////////////////

   if (dosyst) ws->var("glob_syst")->setConstant(true);
   RooArgSet globalObs("global_obs");
   if (dosyst) globalObs.add( *ws->var("glob_syst") );

   // ws->Print();

   RooArgSet poi("poi");
   poi.add( *ws->var("RFrac2Svs1S_PbPbvsPP_P") );



   // create set of nuisance parameters
   RooArgSet nuis("nuis");
   if (dosyst) nuis.add( *ws->var("beta_syst") );

   // set parameters constant
   RooArgSet allVars = ws->allVars();
   TIterator* it = allVars.createIterator();
   RooRealVar *theVar = (RooRealVar*) it->Next();
   while (theVar) {
      TString varname(theVar->GetName());
//      if (varname != "RFrac2Svs1S_PbPbvsPP"
//            && varname != "invMass"
//            && varname != "sample"
//            )
//         theVar->setConstant();
     if ( varname.Contains("f_Jpsi_PP") || varname.Contains("f_Jpsi_PbPb") ||
           varname.Contains("rSigma21_Jpsi_PP") || 
           varname.Contains("m_Jpsi_PP") || varname.Contains("m_Jpsi_PbPb") || 
           varname.Contains("sigma1_Jpsi_PP") || varname.Contains("sigma1_Jpsi_PbPb") || 
           (varname.Contains("lambda")) ||
           (varname.Contains("_fail") && !varname.Contains("RFrac2Svs1S")))
         {
           theVar->setConstant();
         }
      if (varname=="glob_syst"
            || varname=="beta_syst"
         ) {
         cout << varname << endl;
         theVar->setConstant(!dosyst);
      }
      theVar = (RooRealVar*) it->Next();
   }

   // create signal+background Model Config
   RooStats::ModelConfig sbHypo("SbHypo");
   sbHypo.SetWorkspace( *ws );
   sbHypo.SetPdf( *ws->pdf("simPdf_syst") );
   sbHypo.SetObservables( obs );
   sbHypo.SetGlobalObservables( globalObs );
   sbHypo.SetParametersOfInterest( poi );
   sbHypo.SetNuisanceParameters( nuis );
   sbHypo.SetPriorPdf( *ws->pdf("step") ); // this is optional


   /////////////////////////////////////////////////////////////////////
   RooAbsReal * pNll = sbHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) );
   RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
  
   if (controlPlots)
   {
     RooPlot *framepoi = ((RooRealVar *)poi.first())->frame(Bins(10),Range(0.,1),Title("LL and profileLL in RFrac2Svs1S_PbPbvsPP_P"));
     pNll->plotOn(framepoi,ShiftToZero());
     framepoi->SetMinimum(0);
     framepoi->SetMaximum(10);
     TCanvas *cpoi = new TCanvas();
     cpoi->cd(); framepoi->Draw();
     cpoi->SaveAs("cpoi.pdf");
   }
  
   ((RooRealVar *)poi.first())->setMin(0.);
   RooArgSet * pPoiAndNuisance = new RooArgSet("poiAndNuisance");
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   sbHypo.SetSnapshot(*pPoiAndNuisance);
  
   if (controlPlots)
   {
     RooPlot* xframeSB_PP_pass = pObs->frame(Title("SBhypo_PP_pass"));
     data->plotOn(xframeSB_PP_pass,Cut("sample==sample::PP_pass"));
     RooAbsPdf *pdfSB_PP_pass = sbHypo.GetPdf();
     RooCategory *sample = ws->cat("sample");
     pdfSB_PP_pass->plotOn(xframeSB_PP_pass,Slice(*sample,"PP_pass"),ProjWData(*sample,*data));
     TCanvas *c1 = new TCanvas();
     c1->cd(); xframeSB_PP_pass->Draw();
     c1->SaveAs("c1.pdf");
    
     RooPlot* xframeSB_PP_fail = pObs->frame(Title("SBhypo_PP_fail"));
     data->plotOn(xframeSB_PP_fail,Cut("sample==sample::PP_fail"));
     RooAbsPdf *pdfSB_PP_fail = sbHypo.GetPdf();
     pdfSB_PP_fail->plotOn(xframeSB_PP_fail,Slice(*sample,"PP_fail"),ProjWData(*sample,*data));
     TCanvas *c2 = new TCanvas();
     c2->cd(); xframeSB_PP_fail->Draw();
     c2->SaveAs("c1.pdf");
    
     RooPlot* xframeB_PbPb_pass = pObs->frame(Title("SBhypo_PbPb_pass"));
     data->plotOn(xframeB_PbPb_pass,Cut("sample==sample::PbPb_pass"));
     RooAbsPdf *pdfB_PbPb_pass = sbHypo.GetPdf();
     pdfB_PbPb_pass->plotOn(xframeB_PbPb_pass,Slice(*sample,"PbPb_pass"),ProjWData(*sample,*data));
     TCanvas *c3 = new TCanvas();
     c3->cd(); xframeB_PbPb_pass->Draw();
     c3->SetLogy();
     c3->SaveAs("c2.pdf");
    
     RooPlot* xframeB_PbPb_fail = pObs->frame(Title("SBhypo_PbPb_fail"));
     data->plotOn(xframeB_PbPb_fail,Cut("sample==sample::PbPb_fail"));
     RooAbsPdf *pdfB_PbPb_fail = sbHypo.GetPdf();
     pdfB_PbPb_fail->plotOn(xframeB_PbPb_fail,Slice(*sample,"PbPb_fail"),ProjWData(*sample,*data));
     TCanvas *c4 = new TCanvas();
     c4->cd(); xframeB_PbPb_fail->Draw();
     c4->SetLogy();
     c4->SaveAs("c2.pdf");
   }
  
   delete pNll;
   delete pPoiAndNuisance;
   ws->import( sbHypo );
  
   /////////////////////////////////////////////////////////////////////
   RooStats::ModelConfig bHypo = sbHypo;
   bHypo.SetName("BHypo");
   bHypo.SetWorkspace(*ws);
   pNll = bHypo.GetPdf()->createNLL( *data,NumCPU(nCPU) );
   // RooMinuit(*pNll).migrad(); // minimize likelihood wrt all parameters before making plots
   RooArgSet poiAndGlobalObs("poiAndGlobalObs");
   poiAndGlobalObs.add( poi );
   poiAndGlobalObs.add( globalObs );
   RooAbsReal * pProfile = pNll->createProfile( poiAndGlobalObs ); // do not profile POI and global observables
   ((RooRealVar *)poi.first())->setVal( 0 );  // set RFrac2Svs1S_PbPbvsPP=0 here
   pProfile->getVal(); // this will do fit and set nuisance parameters to profiled values
   pPoiAndNuisance = new RooArgSet( "poiAndNuisance" );
   pPoiAndNuisance->add( nuis );
   pPoiAndNuisance->add( poi );
   bHypo.SetSnapshot(*pPoiAndNuisance);


   delete pNll;
   delete pPoiAndNuisance;

   // import model config into workspace
   bHypo.SetWorkspace(*ws);
   ws->import( bHypo );
  
   /////////////////////////////////////////////////////////////////////
   ws->Print();
   bHypo.Print();
   sbHypo.Print();

   // save workspace to file
   string mainDIR = gSystem->ExpandPathName(gSystem->pwd());
   string wsDIR = mainDIR + "/CombinedWorkspaces/";
   string ssubDirName="";
   if (subDirName) ssubDirName.append(subDirName);
   string subDIR = wsDIR + ssubDirName;
  
   void * dirp = gSystem->OpenDirectory(wsDIR.c_str());
   if (dirp) gSystem->FreeDirectory(dirp);
   else gSystem->mkdir(wsDIR.c_str(), kTRUE);

   void * dirq = gSystem->OpenDirectory(subDIR.c_str());
   if (dirq) gSystem->FreeDirectory(dirq);
   else gSystem->mkdir(subDIR.c_str(), kTRUE);
  
   const char* saveName = Form("%s/%s",subDIR.c_str(),nameOut.Data());
   ws->writeToFile(saveName);
}
示例#8
0
int main() {
    const double PDGLbMass=5619.51;
    const double RareUpperBlind=PDGLbMass+125.0;
    const double RareLowerBlind=PDGLbMass-125.0;
    const double Rare2UpperBlind=PDGLbMass+175.0;
    const double Rare2LowerBlind=PDGLbMass-175.0;
    bool blind=true;
    bool remakecc=false;
    bool remakerare=false;
    bool remakerare2=false;
    bool sweight=false;
    TRandom3* MultiCandRand=new TRandom3(224); //dont change seed
    TH1I* ControlChannelMultiCands= new TH1I("ControlChannelMultiCands","ControlChannelMultiCands",10,0,10);
    TH1I* RareChannelMultiCands= new TH1I("RareChannelMultiCands","RareChannelMultiCands",10,0,10);
    TH1I* Rare2ChannelMultiCands= new TH1I("RareChannel2MultiCands","RareChannel2MultiCands",10,0,10);

    //_______________________________________ MAKE CONTROL CHANNEL ROODATASET______________________________________
    if(remakecc) {
        std::string ControlDataPath=std::getenv("BUKETAPDATABDTRESPROOT");
        DataFile CC12A(ControlDataPath,Data,Twel,MagAll,buketap,"BDTApplied_SampleA");
        DataFile CC12B(ControlDataPath,Data,Twel,MagAll,buketap,"BDTApplied_SampleB");
        DataFile CC11A(ControlDataPath,Data,Elev,MagAll,buketap,"BDTApplied_SampleA");
        DataFile CC11B(ControlDataPath,Data,Elev,MagAll,buketap,"BDTApplied_SampleB");

        TreeReader* CC12Reader= new TreeReader("DecayTree");
        CC12Reader->AddFile(CC12A);
        CC12Reader->AddFile(CC12B);
        CC12Reader->Initialize(ControlCuts::BranchesToKeep,"contains");
        TFile* Minimal12File= new TFile("MinimalCC12.root","RECREATE");
        TTree* Minimal12Tree=CC12Reader->CopyTree(ControlCuts::AllCuts12,-1,"DecayTree");
        TTree* MinimalFlagged12Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal12Tree,ControlChannelMultiCands,NULL);
        MinimalFlagged12Tree->Write();
        Minimal12File->Close();

        TreeReader* CC11Reader= new TreeReader("DecayTree");
        CC11Reader->AddFile(CC11A);
        CC11Reader->AddFile(CC11B);
        CC11Reader->Initialize(ControlCuts::BranchesToKeep,"contains");
        TFile* Minimal11File= new TFile("MinimalCC11.root","RECREATE");
        TTree* Minimal11Tree=CC11Reader->CopyTree(ControlCuts::AllCuts11,-1,"DecayTree");
        TTree* MinimalFlagged11Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal11Tree,ControlChannelMultiCands,NULL);
        MinimalFlagged11Tree->Write();
        Minimal11File->Close();

        TreeReader* FlaggedReader= new TreeReader("DecayTree");
        FlaggedReader->AddFile("MinimalCC12.root");
        FlaggedReader->AddFile("MinimalCC11.root");
        FlaggedReader->Initialize();
        TFile* CCSingleFile= new TFile("CCSingleFile.root","RECREATE");
        TTree* SingleTree=FlaggedReader->CopyTree("isSingle==1",-1,"DecayTree");
        SingleTree->Write();
        CCSingleFile->Close();
    }

    //_____________________________________Make Rare Mode One Data__________________________________________________
    if(remakerare) {
        std::string RareDataPath=std::getenv("LBPKETAPPIPIGDATABDTRESPROOT");
        DataFile Rare12A(RareDataPath,Data,Twel,MagAll,lbpketappipig,"BDTApplied_SampleA_NB");
        DataFile Rare12B(RareDataPath,Data,Twel,MagAll,lbpketappipig,"BDTApplied_SampleB_NB");
        DataFile Rare11A(RareDataPath,Data,Elev,MagAll,lbpketappipig,"BDTApplied_SampleA_NB");
        DataFile Rare11B(RareDataPath,Data,Elev,MagAll,lbpketappipig,"BDTApplied_SampleB_NB");

        TreeReader* Rare12Reader= new TreeReader("DecayTree");
        Rare12Reader->AddFile(Rare12A);
        Rare12Reader->AddFile(Rare12B);
        Rare12Reader->Initialize(pipigCuts::BranchesToKeep,"contains");
        TFile* Minimal12File= new TFile("MinimalRare12.root","RECREATE");
        TTree* Minimal12Tree=Rare12Reader->CopyTree(pipigCuts::AllCuts12,-1,"DecayTree");
        TTree* MinimalFlagged12Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal12Tree,RareChannelMultiCands,NULL);
        MinimalFlagged12Tree->Write();
        Minimal12File->Close();

        TreeReader* Rare11Reader= new TreeReader("DecayTree");
        Rare11Reader->AddFile(Rare11A);
        Rare11Reader->AddFile(Rare11B);
        Rare11Reader->Initialize(pipigCuts::BranchesToKeep,"contains");
        TFile* Minimal11File= new TFile("MinimalRare11.root","RECREATE");
        TTree* Minimal11Tree=Rare11Reader->CopyTree(pipigCuts::AllCuts11,-1,"DecayTree");
        TTree* MinimalFlagged11Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal11Tree,RareChannelMultiCands,NULL);
        MinimalFlagged11Tree->Write();
        Minimal11File->Close();

        TreeReader* FlaggedReader= new TreeReader("DecayTree");
        FlaggedReader->AddFile("MinimalRare12.root");
        FlaggedReader->AddFile("MinimalRare11.root");
        FlaggedReader->Initialize();
        TFile* RareSingleFile= new TFile("RareSingleFile.root","RECREATE");
        TTree* SingleTree=FlaggedReader->CopyTree("isSingle==1",-1,"DecayTree");
        SingleTree->Write();
        RareSingleFile->Close();

    }
    //___________________________________ Make Rare mode Two Data________________________________________________
    if(remakerare2) {
        std::string Rare2DataPath=std::getenv("LBPKETAPETADATABDTRESPROOT");
        DataFile Rare212A(Rare2DataPath,Data,Twel,MagAll,lbpketapeta,"BDTApplied_SampleA_NB");
        DataFile Rare212B(Rare2DataPath,Data,Twel,MagAll,lbpketapeta,"BDTApplied_SampleB_NB");
        DataFile Rare211A(Rare2DataPath,Data,Elev,MagAll,lbpketapeta,"BDTApplied_SampleA_NB");
        DataFile Rare211B(Rare2DataPath,Data,Elev,MagAll,lbpketapeta,"BDTApplied_SampleB_NB");

        TreeReader* Rare212Reader= new TreeReader("DecayTree");
        Rare212Reader->AddFile(Rare212A);
        Rare212Reader->AddFile(Rare212B);
        Rare212Reader->Initialize(etapetaCuts::BranchesToKeep,"contains");
        TFile* Minimal12File= new TFile("MinimalRare212.root","RECREATE");
        TTree* Minimal12Tree=Rare212Reader->CopyTree(etapetaCuts::AllCuts12,-1,"DecayTree");
        TTree* MinimalFlagged12Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal12Tree,Rare2ChannelMultiCands,NULL);
        MinimalFlagged12Tree->Write();
        Minimal12File->Close();

        TreeReader* Rare211Reader= new TreeReader("DecayTree");
        Rare211Reader->AddFile(Rare211A);
        Rare211Reader->AddFile(Rare211B);
        Rare211Reader->Initialize(etapetaCuts::BranchesToKeep,"contains");
        TFile* Minimal11File= new TFile("MinimalRare211.root","RECREATE");
        TTree* Minimal11Tree=Rare211Reader->CopyTree(etapetaCuts::AllCuts11,-1,"DecayTree");
        TTree* MinimalFlagged11Tree=HandyFunctions::GetSingleTree(MultiCandRand,Minimal11Tree,Rare2ChannelMultiCands,NULL);
        MinimalFlagged11Tree->Write();
        Minimal11File->Close();

        TreeReader* FlaggedReader= new TreeReader("DecayTree");
        FlaggedReader->AddFile("MinimalRare212.root");
        FlaggedReader->AddFile("MinimalRare211.root");
        FlaggedReader->Initialize();
        TFile* Rare2SingleFile= new TFile("Rare2SingleFile.root","RECREATE");
        TTree* SingleTree=FlaggedReader->CopyTree("isSingle==1",-1,"DecayTree");
        SingleTree->Write();
        Rare2SingleFile->Close();
    }
    //____________________________________ Shared Parameters_______________________________________________________

    RooRealVar DataMCRatio("DataMCRatio","DataMCRatio",1.0,0.5,1.5);
    RooRealVar CCMean("CCMean","CCMean",5279.0,5250.0,5310.0);
    RooFormulaVar LambdabMean("LambdabMean","LambdabMean","@0+339.72",RooArgList(CCMean));
    //RooRealVar LambdabMean("LambdabMean","LambdabMean",5619.0,5615.0,5630.0);
    // RooFormulaVar CCMean("CCMean","CCMean","@0 - 339.72",RooArgList(LambdabMean));

    std::vector<RooRealVar*> FreeParameters;
    FreeParameters.push_back(&DataMCRatio);
    //  FreeParameters.push_back(&LambdabMean);

    //____________________________________ Control Channel PDF______________________________________________________

    TFile* CCInputFile = new TFile("CCSingleFile.root");
    TTree* CCInputTree=(TTree*)CCInputFile->Get("DecayTree");
    RooRealVar CCBMass("Bu_DTF_MF","Bu_DTF_MF",5000.0,5550.0);
    RooRealVar CCEtaMass("eta_prime_MM","eta_prime_MM",880.0,1040.0);
    RooArgSet CCArgs(CCBMass,CCEtaMass);
    RooDataSet* CCData=new RooDataSet("CCData","CCData",CCArgs,Import(*CCInputTree));


    //++++++++++++++++++++++++++++++Signal PDF+++++++++++++++++++++++++++++++++


    TFile *CCMCFitResultFile = new TFile("CCFitResult.root");
    RooFitResult* CCMCFitResult=NULL;
    try {
        CCMCFitResult=SafeGetFitResult(CCMCFitResultFile,"CCFitResult");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    CCMCFitResult->Print("v");
    RooRealVar* CCMCSigma=NULL;
    RooRealVar* CCMCLAlphaFix=NULL;
    RooRealVar* CCMCRAlphaFix=NULL;
    RooRealVar* CCMCLNFix=NULL;
    RooRealVar* CCMCRNFix=NULL;

    try {
        CCMCSigma=SafeGetVar(CCMCFitResult,"CCSigma");
        CCMCLAlphaFix=SafeGetVar(CCMCFitResult,"CCLAlpha");
        CCMCRAlphaFix=SafeGetVar(CCMCFitResult,"CCRAlpha");
        CCMCLNFix=SafeGetVar(CCMCFitResult,"CCLN");
        CCMCRNFix=SafeGetVar(CCMCFitResult,"CCRN");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    RooRealVar CCMCSigmaFix("CCMCSigmaFix","CCMCSigmaFix",CCMCSigma->getVal());
    CCMCSigmaFix.setConstant(kTRUE);
    RooFormulaVar CCSigma("CCSigma","CCSigma","@0*@1",RooArgList(DataMCRatio,CCMCSigmaFix));

    RooRealVar CCLAlpha("CCLAlpha","CCLAlpha",CCMCLAlphaFix->getVal());

    RooRealVar CCRAlpha("CCRAlpha","CCRAlpha",CCMCRAlphaFix->getVal());

    RooRealVar CCLN("CCLN","CCLN",CCMCLNFix->getVal());

    RooRealVar CCRN("CCRN","CCRN",CCMCRNFix->getVal());

    RooCBShape CCDCBLeft("CCDCBLeft","CCDCBLeft",CCBMass,CCMean,CCSigma,CCLAlpha,CCLN);

    RooCBShape CCDCBRight("CCDCBRight","CCDCBRight",CCBMass,CCMean,CCSigma,CCRAlpha,CCRN);

    RooRealVar CCFitFraction("CCFitFraction","CCFitFraction",0.5,0.0,1.0);
    FreeParameters.push_back(&CCFitFraction);
    RooAddPdf CCDCB("CCDCB","CCDCB",RooArgList(CCDCBRight,CCDCBLeft),CCFitFraction);

    RooRealVar CCEtamean("CCEtamean","CCEtamean",958.0,955.0,960.0);
    RooRealVar CCEtasigma("CCEtasigma","CCEtasigma",9.16,9.0,15.0);

    RooRealVar* CCMCEtaLAlpha=NULL;
    RooRealVar* CCMCEtaRAlpha=NULL;
    RooRealVar* CCMCEtaLN=NULL;
    RooRealVar* CCMCEtaRN=NULL;

    try {
        CCMCEtaLAlpha=SafeGetVar(CCMCFitResult,"CCEtaLAlpha");
        CCMCEtaRAlpha=SafeGetVar(CCMCFitResult,"CCEtaRAlpha");
        CCMCEtaLN=SafeGetVar(CCMCFitResult,"CCEtaLN");
        CCMCEtaRN=SafeGetVar(CCMCFitResult,"CCEtaRN");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    RooRealVar CCEtaLAlpha("CCEtaLAlpha","CCEtaLAlpha",CCMCEtaLAlpha->getVal());

    RooRealVar CCEtaRAlpha("CCEtaRAlpha","CCEtaRAlpha",CCMCEtaRAlpha->getVal());

    RooRealVar CCEtaLN("CCEtaLN","CCEtaLN",CCMCEtaLN->getVal());

    RooRealVar CCEtaRN("CCEtaRN","CCEtaRN",CCMCEtaRN->getVal());

    RooCBShape CCEtaDCBLeft("CCEtaCBLeft","CCEtaCBLeft",CCEtaMass,CCEtamean,CCEtasigma,CCEtaLAlpha,CCEtaLN);

    RooCBShape CCEtaDCBRight("CCEtaCBRight","CCEtaCBRight",CCEtaMass,CCEtamean,CCEtasigma,CCEtaRAlpha,CCEtaRN);

    RooRealVar CCEtaFitFraction("CCEtaFitFraction","CCEtaFitFraction",0.22,0.1,1.0);
    FreeParameters.push_back(&CCEtaFitFraction);

    RooAddPdf CCEtaDCB("CCEteaDCB","CCEtaDCB",RooArgList(CCEtaDCBRight,CCEtaDCBLeft),CCEtaFitFraction);

    RooProdPdf CCSignalPdf("CCSignalPdf","CCSignalPdf",RooArgSet(CCEtaDCB,CCDCB));
    RooRealVar CCSignalYield("CCSignalYield","CCSignalYield",10000.0,1000.0,20000.0);

    RooExtendPdf CCExtendedSignalPdf("CCExtendedSignalPdf","CCExtendedSignalPdf",CCSignalPdf,CCSignalYield);

    //+++++++++++++++++++++++++++++++++ COMB NO ETAP PDF++++++++++++++++++++++++++++++++++++++++

    RooRealVar CCNoEtaBSlope("CCNoEtaBSlope","CCNoEtaBSlope",-0.6,-0.8,-0.4);
    FreeParameters.push_back(&CCNoEtaBSlope);

    RooRealVar CCNoEtaBCurve("CCNoEtaBCurve","CCNoEtaBCurve",-0.1,-0.30,-0.05);
    FreeParameters.push_back(&CCNoEtaBCurve);

    RooChebychev CCNoEtaBLine("CCNoEtaBLine","CCNoEtaBLine",CCBMass,RooArgList(CCNoEtaBSlope,CCNoEtaBCurve));

    RooRealVar CCNoEtaEtaP1("CCNoEtaEtaP1","CCNoEtaEtaP1",-0.1,-1.0,0.0);
    FreeParameters.push_back(&CCNoEtaEtaP1);

    RooRealVar CCNoEtaEtaP2("CCNoEtaEtaP2","CCNoEtaEtaP2",-0.1,-0.8,0.0);
    FreeParameters.push_back(&CCNoEtaEtaP2);

    RooChebychev CCNoEtaQuad("CCNoEtaQuad","CCNoEtaQuad",CCEtaMass,RooArgList(CCNoEtaEtaP1,CCNoEtaEtaP2));

    RooProdPdf CCNoEtaBkgPdf("CCNoEtaBkgPdf","CCNoEtaBkgPdf",RooArgSet(CCNoEtaQuad,CCNoEtaBLine));
    RooRealVar CCNoEtaBkgYield("CCNoEtaBkgYield","CCNoEtaBkgYield",2400.0,500.0,15000.0);

    RooExtendPdf ExtCCNoEtaBkgPdf("ExtCCNoEtaBkgPdf","ExtCCNoEtaBkgPdf",CCNoEtaBkgPdf,CCNoEtaBkgYield);


    //++++++++++++++++++++++++++++++++++ COMB TRUE ETAP PDF++++++++++++++++++++++++++++++++++

    RooRealVar CCTrueEtaBSlope("CCTrueEtaBSlope","CCTrueEtaBSlope",-0.1,-1.0,0.0);
    FreeParameters.push_back(&CCTrueEtaBSlope);

    RooChebychev CCTrueEtaBLine("CCTrueEtaBLine","CCTrueEtaBLine",CCBMass,RooArgList(CCTrueEtaBSlope));

    RooRealVar CCTrueEtaEtaLAlpha("CCTrueEtaEtaLAlpha","CCTrueEtaEtaLAlpha",CCMCEtaLAlpha->getVal());
    RooRealVar CCTrueEtaEtaRAlpha("CCTrueEtaEtaRAlpha","CCTrueEtaEtaRAlpha",CCMCEtaRAlpha->getVal());
    RooRealVar CCTrueEtaEtaLN("CCTrueEtaEtaLN","CCTrueEtaEtaLN",CCMCEtaLN->getVal());
    RooRealVar CCTrueEtaEtaRN("CCTrueEtaEtaRN","CCTrueEtaEtaRN",CCMCEtaRN->getVal());

    //RooCBShape CCTrueEtaEtaCBLeft("CCTrueEtaEtaCBLeft","CCTrueEtaEtaCBLeft",CCEtaMass,CCEtamean,CCEtasigma,CCTrueEtaEtaLAlpha,CCTrueEtaEtaLN);

    RooCBShape CCTrueEtaEtaCBRight("CCTrueEtaEtaCBRight","CCTrueEtaEtaCBRight",CCEtaMass,CCEtamean,CCEtasigma,CCTrueEtaEtaRAlpha,CCTrueEtaEtaRN);

    //  RooRealVar CCTrueEtaEtaFitFraction("CCTrueEtaEtaFitFraction","CCTrueEtaEtaFitFraction",0.4,0.0,1.0);
    //RooAddPdf CCTrueEtaEtaDCB("CCTrueEtaEtaDCB","CCTrueEtaEtaDCB",RooArgList(CCTrueEtaEtaCBRight,CCTrueEtaEtaCBLeft),CCTrueEtaEtaFitFraction);

    RooProdPdf CCTrueEtaEtaBkgPdf("CCTrueEtaEtaBkgPdf","CCTrueEtaEtaBkgPdf",RooArgSet(CCTrueEtaEtaCBRight,CCTrueEtaBLine));

    RooRealVar CCTrueEtaBkgYield("CCTrueEtaBkgYield","CCTrueEtaBkgYield",800.0,20.0,10000.0);

    RooExtendPdf ExtCCTrueEtaBkgPdf("ExtCCTrueEtaBkgPdf","ExtCCTrueEtaBkgPdf",CCTrueEtaEtaBkgPdf,CCTrueEtaBkgYield);

    RooAddPdf CCTotalPdf("CCTotalPdf","CCTotalPdf",RooArgList(ExtCCTrueEtaBkgPdf,ExtCCNoEtaBkgPdf,CCExtendedSignalPdf));



    //_________________________________Rare1 Fit_____________________________

    TFile * RareInputFile = new TFile("RareSingleFile.root");
    TTree* RareInputTree=NULL;
    try {
        RareInputTree=SafeGetTree(RareInputFile,"DecayTree");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    RooRealVar LbMass("Lambda_b0_DTF_MF","Lambda_b0_DTF_MF",5200.0,6000.0);
    RooRealVar RareLambda_b0_PE("Lambda_b0_PE","Lambda_b0_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareLambda_b0_PX("Lambda_b0_PX","Lambda_b0_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareLambda_b0_PY("Lambda_b0_PY","Lambda_b0_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareLambda_b0_PZ("Lambda_b0_PZ","Lambda_b0_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareProton_PE("Proton_PE","Proton_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareProton_PX("Proton_PX","Proton_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareProton_PY("Proton_PY","Proton_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareProton_PZ("Proton_PZ","Proton_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareKaon_PE("Kaon_PE","Kaon_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareKaon_PX("Kaon_PX","Kaon_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareKaon_PY("Kaon_PY","Kaon_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar RareKaon_PZ("Kaon_PZ","Kaon_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rareeta_prime_PE("eta_prime_PE","eta_prime_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rareeta_prime_PX("eta_prime_PX","eta_prime_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rareeta_prime_PY("eta_prime_PY","eta_prime_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rareeta_prime_PZ("eta_prime_PZ","eta_prime_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooArgSet RareArgs(LbMass,RareLambda_b0_PE,RareLambda_b0_PX,RareLambda_b0_PY,RareLambda_b0_PZ,RareProton_PE,RareProton_PX,RareProton_PY,RareProton_PZ);
    RareArgs.add(RareKaon_PE);
    RareArgs.add(RareKaon_PX);
    RareArgs.add(RareKaon_PY);
    RareArgs.add(RareKaon_PZ);
    RareArgs.add(Rareeta_prime_PE);
    RareArgs.add(Rareeta_prime_PX);
    RareArgs.add(Rareeta_prime_PY);
    RareArgs.add(Rareeta_prime_PZ);
    RooDataSet* RareData= new RooDataSet("RareData","RareData",RareArgs,Import(*RareInputTree));


    TFile * RareFitResultFile = new TFile("RareFitResult.root");
    RooFitResult* RareMCFitResult=NULL;
    try {
        RareMCFitResult=SafeGetFitResult(RareFitResultFile,"RareFitResult");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    RareMCFitResult->Print("v");
    RooRealVar* RareMCRAlpha=NULL;
    RooRealVar* RareMCFitFraction=NULL;
    RooRealVar* RareMCLAlpha=NULL;
    RooRealVar* RareMCLN=NULL;
    RooRealVar* RareMCRN=NULL;
    RooRealVar* RareMCSigma=NULL;
    try {
        RareMCRAlpha=SafeGetVar(RareMCFitResult,"RareAlpha");
        RareMCFitFraction=SafeGetVar(RareMCFitResult,"RareFitFraction");
        RareMCLAlpha=SafeGetVar(RareMCFitResult,"RareLAlpha");
        RareMCLN=SafeGetVar(RareMCFitResult,"RareLN");
        RareMCRN=SafeGetVar(RareMCFitResult,"RareRN");
        RareMCSigma=SafeGetVar(RareMCFitResult,"RareSigma");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }

    //++++++++++++++++++++++++++++++Rare Signal PDF++++++++++++++++++++++++++++
    RooRealVar RareMCSigmaFix("RareMCSigmaFix","RareMCSigmaFix",RareMCSigma->getVal());
    RareMCSigmaFix.setConstant();

    RooFormulaVar RareSigma("RareSigma","RareSigma","@0*@1",RooArgSet(RareMCSigmaFix,DataMCRatio));
    RooRealVar RareLAlpha("RareLAlpha","RareLAlpha",RareMCLAlpha->getVal());
    RooRealVar RareRAlpha("RareRAlpha","RareRAlpha",RareMCRAlpha->getVal());
    RooRealVar RareRN("RareRN","RareRN",RareMCRN->getVal());
    RooRealVar RareLN("RareLN","RareLN",RareMCLN->getVal());
    RooRealVar RareFitFraction("RareFitFraction","RareFitFraction",RareMCFitFraction->getVal());

    RooCBShape RareDCBLeft("DCBLeft","DCBLeft",LbMass,LambdabMean,RareSigma,RareLAlpha,RareLN);

    RooCBShape RareDCBRight("DCBRight","DCBRight",LbMass,LambdabMean,RareSigma,RareRAlpha,RareRN);

    RooAddPdf RareDCB("RareDCB","RareDCB",RooArgList(RareDCBLeft,RareDCBRight),RareFitFraction);

    RooRealVar RareYield("RareYield","RareYield",40.0,-100.0,1000.0);
    RooExtendPdf RareSignalPdf("RareSignalPdf","RareSignalPdf",RareDCB,RareYield);
    //++++++++++++++++++++++++++++++Rare Combinatorial Bkg+++++++++++++++++++++++++++++++++++
    RooRealVar Rarep1("Rarep1","Rarep1",-1.1,-5.0,-0.1);
    FreeParameters.push_back(&Rarep1);

    RooRealVar Rarep2("Rarep2","Rarep2",0.5,0.001,10.0);
    FreeParameters.push_back(&Rarep2);

    RooChebychev RarePoly("RarePoly","RarePoly",LbMass,RooArgList(Rarep1,Rarep2));

    RooRealVar RareBkgYield("RareBkgYield","RareBkgYield",2000.0,0.0,10000.0);
    RooExtendPdf RareBkgPdf("RareBkgPdf","RareBkgPdf",RarePoly,RareBkgYield);

    //++++++++++++++++++++++++++++Rare PKPhi Bkg+++++++++++++++++++++++++++++++++
    TFile* PKPhiMCFitresultFile= new TFile("PkPhiFitResultFile.root");
    RooFitResult* PKPhiMCFitResult=NULL;
    try {
        PKPhiMCFitResult=SafeGetFitResult(PKPhiMCFitresultFile,"PkPhiFitResult");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    PKPhiMCFitResult->Print("v");
    RooRealVar* PkPhiMean=NULL;
    RooRealVar* PkPhiSigma=NULL;
    RooRealVar* PkPhiLAlpha=NULL;
    RooRealVar* PkPhiRAlpha=NULL;
    RooRealVar* PkPhiLN=NULL;
    RooRealVar* PkPhiRN=NULL;
    try {
        PkPhiMean=SafeGetVar(PKPhiMCFitResult,"PkPhiMean");
        PkPhiSigma=SafeGetVar(PKPhiMCFitResult,"PkPhiSigma");
        PkPhiLAlpha=SafeGetVar(PKPhiMCFitResult,"PkPhiLAlpha");
        PkPhiLN=SafeGetVar(PKPhiMCFitResult,"PkPhiLN");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }

    RooRealVar RarePkPhiMean("RarePkPhiMean","RarePkPhiMean",PkPhiMean->getVal());
    RooRealVar RarePkPhiSigma("RarePkPhiSigma","RarePkPhiSigma",PkPhiSigma->getVal());
    RooRealVar RarePkPhiLN("RarePkPhiLN","RarePkPhiLN",PkPhiLN->getVal());
    RooRealVar RarePkPhiLAlpha("RarePkPhiLAlpha","RarePkPhiLAlpha",PkPhiLAlpha->getVal());

    RooCBShape RarePkPhiModel("RarePkPhiModel","RarePkPhiModel",LbMass,RarePkPhiMean,RarePkPhiSigma,RarePkPhiLAlpha,RarePkPhiLN);

    RooRealVar RarePkPhiYield("RarePkPhiYield","RarePkPhiYield",50.0,1.0,150.0);
    RooExtendPdf RarePkPhiPdf("RarePkPhiPdf","RarePkPhiPdf",RarePkPhiModel,RarePkPhiYield);

    RooAddPdf RarePdf("RarePdf","RarePdf",RooArgList(RarePkPhiPdf,RareBkgPdf,RareSignalPdf));

    /*RarePdf.fitTo(*RareData,Extended(kTRUE));
    RooPlot* RareFrame=LbMass.frame(Bins(35),Range(5200.0,6100.0));
    TCanvas RareCanvas;
    RareData->plotOn(RareFrame);
    RarePdf.plotOn(RareFrame);
    RareFrame->Draw();
    RareCanvas.SaveAs("RareCanvas.pdf");*/

    //________________________________ Fit Rare 2_______________________________
    TFile* Rare2InputFile = new TFile("Rare2SingleFile.root");
    TTree* Rare2InputTree=NULL;
    try {
        Rare2InputTree=SafeGetTree(Rare2InputFile,"DecayTree");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }
    RooRealVar Rare2Lambda_b0_PE("Lambda_b0_PE","Lambda_b0_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Lambda_b0_PX("Lambda_b0_PX","Lambda_b0_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Lambda_b0_PY("Lambda_b0_PY","Lambda_b0_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Lambda_b0_PZ("Lambda_b0_PZ","Lambda_b0_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Proton_PE("Proton_PE","Proton_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Proton_PX("Proton_PX","Proton_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Proton_PY("Proton_PY","Proton_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Proton_PZ("Proton_PZ","Proton_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Kaon_PE("Kaon_PE","Kaon_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Kaon_PX("Kaon_PX","Kaon_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Kaon_PY("Kaon_PY","Kaon_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2Kaon_PZ("Kaon_PZ","Kaon_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2eta_prime_PE("eta_prime_PE","eta_prime_PE",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2eta_prime_PX("eta_prime_PX","eta_prime_PX",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2eta_prime_PY("eta_prime_PY","eta_prime_PY",-RooNumber::infinity(),RooNumber::infinity());
    RooRealVar Rare2eta_prime_PZ("eta_prime_PZ","eta_prime_PZ",-RooNumber::infinity(),RooNumber::infinity());
    RooArgSet Rare2Args(LbMass,Rare2Lambda_b0_PE,Rare2Lambda_b0_PX,Rare2Lambda_b0_PY,Rare2Lambda_b0_PZ,Rare2Proton_PE,Rare2Proton_PX,Rare2Proton_PY,Rare2Proton_PZ);
    Rare2Args.add(Rare2Kaon_PE);
    Rare2Args.add(Rare2Kaon_PX);
    Rare2Args.add(Rare2Kaon_PY);
    Rare2Args.add(Rare2Kaon_PZ);
    Rare2Args.add(Rare2eta_prime_PE);
    Rare2Args.add(Rare2eta_prime_PX);
    Rare2Args.add(Rare2eta_prime_PY);
    Rare2Args.add(Rare2eta_prime_PZ);

    RooDataSet* Rare2Data=new RooDataSet("Rare2Data","Rare2Data",Rare2Args,Import(*Rare2InputTree));

    TFile* Rare2MCFitResultFile= new TFile("RareTwoFitResult.root");
    RooFitResult* Rare2MCFitResult=NULL;
    try {
        Rare2MCFitResult=SafeGetFitResult(Rare2MCFitResultFile,"RareTwoFitResult");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }

    //++++++++++++++++++++++++++++++Signal PDF++++++++++++++++++++++++++++++++
    RooRealVar* Rare2MCFitFraction=NULL;
    RooRealVar* Rare2MCLAlpha=NULL;
    RooRealVar* Rare2MCLN=NULL;
    RooRealVar* Rare2MCRN=NULL;
    RooRealVar* Rare2MCRAlpha=NULL;
    RooRealVar* Rare2MCSigma=NULL;

    try {
        Rare2MCFitFraction=SafeGetVar(Rare2MCFitResult,"Rare2FitFraction");
        Rare2MCLAlpha=SafeGetVar(Rare2MCFitResult,"Rare2LAlpha");
        Rare2MCLN=SafeGetVar(Rare2MCFitResult,"Rare2LN");
        Rare2MCRN=SafeGetVar(Rare2MCFitResult,"Rare2RN");
        Rare2MCRAlpha=SafeGetVar(Rare2MCFitResult,"Rare2RAlpha");
        Rare2MCSigma=SafeGetVar(Rare2MCFitResult,"Rare2Sigma");
    } catch(std::exception &e) {
        std::cout<<e.what()<<std::endl;
        return 1;
    }

    RooRealVar Rare2SigmaFix("Rare2SigmaFix","Rare2SigmaFix",Rare2MCSigma->getVal());
    RooFormulaVar Rare2Sigma("Rare2Sigma","Rare2Sigma","@0*@1",RooArgList(Rare2SigmaFix,DataMCRatio));

    RooRealVar Rare2LN("Rare2LN","Rare2LN",Rare2MCLN->getVal());
    RooRealVar Rare2RN("Rare2RN","Rare2RN",Rare2MCRN->getVal());
    RooRealVar Rare2RAlpha("Rare2RAlpha","Rare2RAlpha",Rare2MCRAlpha->getVal());
    RooRealVar Rare2LAlpha("Rare2LAlpha","Rare2LAlpha",Rare2MCLAlpha->getVal());
    RooRealVar Rare2FitFraction("Rare2FitFraction","Rare2FitFraction",Rare2MCFitFraction->getVal());

    RooCBShape Rare2CBLeft("Rare2CBLeft","Rare2CBLeft",LbMass,LambdabMean,Rare2Sigma,Rare2LAlpha,Rare2LN);

    RooCBShape Rare2CBRight("Rare2CBRight","Rare2CBRight",LbMass,LambdabMean,Rare2Sigma,Rare2RAlpha,Rare2RN);

    RooAddPdf Rare2DCB("Rare2DCB","Rare2DCB",RooArgList(Rare2CBLeft,Rare2CBRight),Rare2FitFraction);

    RooRealVar Rare2SignalYield("Rare2SignalYield","Rare2SignalYield",100.0,-100.0,1000.0);
    RooExtendPdf Rare2SignalPdf("Rare2SignalPdf","Rare2SignalPdf",Rare2DCB,Rare2SignalYield);

    //++++++++++++++++++++++++++++++Rare 2 Bkg pdf++++++++++++++++++++++++++++++
    RooRealVar Rare2K("K","K",-0.003,-0.1,0.0);
    RooExponential Rare2BkgExp("Rare2BkgExp","Rare2BkgExp",LbMass,Rare2K);
    RooRealVar Rare2BkgYield("Rare2BkgYield","Rare2BkgYield",2000.0,0.0,100000.0);
    RooExtendPdf Rare2BkgPdf("Rare2BkgPdf","Rare2BkgPdf",Rare2BkgExp,Rare2BkgYield);

    RooAddPdf Rare2Pdf("Rare2Pdf","Rare2Pdf",RooArgList(Rare2SignalPdf,Rare2BkgPdf));

    //___________________________________ SImultaneous Part ________________________________________________________

    RooCategory Channel("Channel","Channel");
    Channel.defineType("Rare");
    Channel.defineType("Rare2");
    Channel.defineType("Control");

    RooDataSet* AllData = new RooDataSet("AllData","AllData",RooArgSet(LbMass,CCBMass,CCEtaMass),Index(Channel),Import("Rare",*RareData),Import("Rare2",*Rare2Data),Import("Control",*CCData));

    RooSimultaneous SimPdf("SimPdf","SimPdf",Channel);
    SimPdf.addPdf(Rare2Pdf,"Rare2");
    SimPdf.addPdf(RarePdf,"Rare");
    SimPdf.addPdf(CCTotalPdf,"Control");

    RooDataSet* BlindedData=NULL;
    RooFitResult* SimResult=NULL;
    if(blind) {
        LbMass.setRange("RLSB",5200.0,RareLowerBlind);
        LbMass.setRange("RUSB",RareUpperBlind,6000.0);
        LbMass.setRange("R2LSB",5200.0,Rare2LowerBlind);
        LbMass.setRange("R2USB",Rare2UpperBlind,6000.0);
        LbMass.setRange("RDLSB",5200.0,5493.33333);
        LbMass.setRange("RDUSB",RareUpperBlind,6000.0);

        std::string CutString="Lambda_b0_DTF_MF<"+std::to_string(RareLowerBlind)+"||Lambda_b0_DTF_MF>"+std::to_string(Rare2UpperBlind);
        BlindedData=(RooDataSet*)AllData->reduce(CutString.data());
        RooMsgService::instance().setSilentMode(kTRUE);
        RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL) ;
    }

    RooArgSet MinosPars(Rare2SignalYield,RareYield,CCSignalYield);
    SimResult = SimPdf.fitTo(*AllData,Save(kTRUE),Extended(kTRUE),Minos(MinosPars));
    SimPdf.Print("v");
    RooPlot* NominalLikelihoodRareYield=RareYield.frame(Title("Likelihood scan of RareYield"),Range(50,150));
    RooAbsReal* nll = SimPdf.createNLL(*AllData,NumCPU(2),Extended(kTRUE));
    TCanvas C;
    nll->plotOn(NominalLikelihoodRareYield,ShiftToZero());
    NominalLikelihoodRareYield->Draw();
    C.SaveAs("NominalLikelihood.pdf");
    //  HandyFunctions::SetlhcbStyle();
    //_______________________________ Plot B+ Canvas_____________________________________________________________
    RooPlot* CCBFrame= CCBMass.frame(Bins(50),Range(5000.0,5500.0),Title("Control Channel B+ Mass Projection"));
    AllData->plotOn(CCBFrame,Cut("Channel==Channel::Control"));
    SimPdf.plotOn(CCBFrame,Slice(Channel,"Control"),Components("ExtCCTrueEtaBkgPdf"),LineColor(kMagenta),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCBFrame,Slice(Channel,"Control"),Components("ExtCCNoEtaBkgPdf"),LineColor(kGreen),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCBFrame,Slice(Channel,"Control"),Components("CCExtendedSignalPdf"),LineColor(kRed),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCBFrame,Slice(Channel,"Control"),ProjWData(Channel,*AllData));
    TCanvas* CCBCanvas=HandyFunctions::DecoratePlot(CCBFrame);
    /*(TCanvas* CCBCanvas= new TCanvas("CCBCanvas","CCBCanvas",1600,900);
    CCBFrame->Draw();
    CCBCanvas->SaveAs("CCBCanvas.eps");*/

    //________________________________Plot Eta Canvas_____________________________________________________________
    RooPlot* CCEtaFrame=CCEtaMass.frame(Bins(50),Range(880.0,1040.0),Title("Control Channel Eta' Projection"));
    AllData->plotOn(CCEtaFrame,Cut("Channel==Channel::Control"));
    SimPdf.plotOn(CCEtaFrame,Slice(Channel,"Control"),Components("ExtCCTrueEtaBkgPdf"),LineColor(kMagenta),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCEtaFrame,Slice(Channel,"Control"),Components("ExtCCNoEtaBkgPdf"),LineColor(kGreen),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCEtaFrame,Slice(Channel,"Control"),Components("CCExtendedSignalPdf"),LineColor(kRed),LineStyle(kDashed),ProjWData(Channel,*AllData));
    SimPdf.plotOn(CCEtaFrame,Slice(Channel,"Control"),ProjWData(Channel,*AllData));
    TCanvas* CCEtaCanvas=HandyFunctions::DecoratePlot(CCEtaFrame);
    /*TCanvas* CCEtaCanvas=new TCanvas("CCEtaCanvas","CCEtaCanvas",1600,900);
    CCEtaFrame->Draw();
    CCEtaCanvas->Print("CCEtaCanvas.eps");*/


    //________________________________Plot Rare Canvas_____________________________________________________________
    RooPlot* RareFrame=LbMass.frame(Bins(30),Range(5200.0,6000.0),Title("#Lambda_{b} -> p K (#eta' -> #pi #pi #gamma) ;M(#Lambda_{b})"));
    if(blind) {
        double sidebandsN = RareData ->sumEntries("1","RLSB,RUSB");
        double LowsidebandsN = RareData ->sumEntries("1","RLSB");
        RareData->plotOn(RareFrame,CutRange("RDLSB,RDUSB"),Name("RareDataPlotted"));
        RarePdf.plotOn(RareFrame,Range("RLSB,RUSB"),Components("RarePkPhiPdf"),Name("RarePkPhiBkg"),LineColor(kMagenta),LineStyle(kDashed),Normalization(sidebandsN,RooAbsReal::NumEvent));
        RarePdf.plotOn(RareFrame,Range("RLSB,RUSB"),Components("RareBkgPdf"),Name("RareCombBkg"),LineColor(kGreen),LineStyle(kDashed),Normalization(sidebandsN,RooAbsReal::NumEvent));
        RarePdf.plotOn(RareFrame,Range("RLSB,RUSB"),Normalization(sidebandsN,RooAbsReal::NumEvent));
    } else {
        AllData->plotOn(RareFrame,Cut("Channel==Channel::Rare"));
        SimPdf.plotOn(RareFrame,Slice(Channel,"Rare"),Components("RarePkPhiPdf"),LineColor(kMagenta),LineStyle(kDashed),ProjWData(Channel,*AllData));
        SimPdf.plotOn(RareFrame,Slice(Channel,"Rare"),Components("RareBkgPdf"),LineColor(kGreen),LineStyle(kDashed),ProjWData(Channel,*AllData));
        SimPdf.plotOn(RareFrame,Slice(Channel,"Rare"),Components("RareSignalPdf"),LineColor(kRed),LineStyle(kDashed),ProjWData(Channel,*AllData));
        SimPdf.plotOn(RareFrame,Slice(Channel,"Rare"),ProjWData(Channel,*AllData));
    }
    int i=RareFrame->numItems();
    std::cout<<"_________________________________________"<<std::endl;
    for(int j=0; j<i; j++) {
        std::cout<<RareFrame->nameOf(j)<<std::endl;
    }
    TLegend * RareLegend = new TLegend(0.66,0.7,0.9,0.9);
    RareLegend->AddEntry(RareFrame->findObject("RarePkPhiBkg"),"#Lambda_{b} -> p K #phi bkg","l");
    RareLegend->AddEntry(RareFrame->findObject("RareCombBkg"),"Combinatorial Background","l");
    std::cout<<"++++++++++++++++++++++++++++++++++++++++++++"<<std::endl;
    RooHist* Pulls=RareFrame->pullHist(0,"RarePdf_Norm[Lambda_b0_DTF_MF]");
    TCanvas* RareCanvas=HandyFunctions::DecoratePlot(RareFrame,"DecoratedRareCanvas");
    RareCanvas->Print("RareCanvas.pdf");
    TCanvas * PullCanvas=new TCanvas("RarePullCanvas","RarePullCanvas",1200,1000);
    Pulls->Draw("AP");
    PullCanvas->SaveAs("RarePulls.pdf");
    TCanvas *RareNoPullCanvas = new TCanvas("RareFitCanvas","RareFitCanvas",1600,900);
    RareFrame->Draw();
    RareLegend->Draw();
    RareNoPullCanvas->Print("RareNoPullCanvasPrinted.eps");


    //_______________________________Plot Rare2 Canvas_____________________________________________________________
    RooPlot* Rare2Frame=LbMass.frame(Bins(25),Range(5200.0,6000.),Title("#Lambda_{b} -> p K (#eta' -> #pi #pi #eta);M(#Lambda_{b})"));
    if(blind) {
        double Rare2sidebandsN= Rare2Data->sumEntries("1","R2LSB,R2USB");
        Rare2Data->plotOn(Rare2Frame,CutRange("R2LSB,R2USB"));
        Rare2Pdf.plotOn(Rare2Frame,Range("R2LSB,R2USB"),Normalization(Rare2sidebandsN,RooAbsReal::NumEvent));
    } else {
        AllData->plotOn(Rare2Frame,Cut("Channel==Channel::Rare2"));
        SimPdf.plotOn(Rare2Frame,Slice(Channel,"Rare2"),Components("Rare2BkgPdf"),LineColor(kGreen),LineStyle(kDashed),ProjWData(Channel,*AllData));
        SimPdf.plotOn(Rare2Frame,Slice(Channel,"Rare2"),Components("Rare2SignalPdf"),LineColor(kRed),LineStyle(kDashed),ProjWData(Channel,*AllData));
        SimPdf.plotOn(Rare2Frame,Slice(Channel,"Rare2"),ProjWData(Channel,*AllData));
    }
    TCanvas* NoPullRare2= new TCanvas("NoPullRare2","NoPullRare2",1800,1000);
    Rare2Frame->Draw();
    NoPullRare2->SaveAs("PiPiEtaFit.eps");
    TCanvas* Rare2Canvas=HandyFunctions::DecoratePlot(Rare2Frame,"DecoratedRare2Canvas");
    Rare2Canvas->SaveAs("Rare2Canvas.pdf");

    if(blind) {
        RooArgSet NotBlind(CCEtamean,CCSignalYield,DataMCRatio,CCNoEtaBkgYield,CCTrueEtaBkgYield,CCMean,RareBkgYield,Rare2BkgYield,RarePkPhiYield);
        cout << "Fit complete" << endl;
        cout << "covQual:" << SimResult->covQual() << endl;
        cout << "EDM:" << SimResult->edm() << endl;
        cout << "FCN at min:" << SimResult->minNll() << endl;
        NotBlind.Print("s");
    }


    TFile* DataFitResults= new TFile("DataFitResults.root","RECREATE");
    RareNoPullCanvas->Write();
    CCBCanvas->Write();
    CCEtaCanvas->Write();
    RareCanvas->Write();
    Rare2Canvas->Write();
    SimResult->Write("DataFitResult");
    DataFitResults->Close();

    RooWorkspace* Wkspc= new RooWorkspace("w","workspace");
    Wkspc->import(SimPdf);
    //  Wkspc->writeToFile("BigFitWorkspace.root");
    Wkspc->writeToFile("TestBigFitWorkspace.root");

    for(auto Var : FreeParameters) {
        Var->setConstant();
    }

    RooStats::SPlot* sDataMass;
    if(sweight) {
        sDataMass = new RooStats::SPlot("sData","An SPlot",*RareData,&RarePdf,RooArgList(RarePkPhiYield,RareYield,RareBkgYield));
        std::cout<<" Check SWeights: "<<std::endl;
        std::cout<<" BkgYield= "<<RareBkgYield.getVal()<<std::endl;
        std::cout<<" Bkg yield from sweights = "<<sDataMass->GetYieldFromSWeight("RareBkgYield")<<std::endl;
    }




}
示例#9
0
void plot_pll(TString fname="monoh_withsm_SRCR_bg11.7_bgslop-0.0_nsig0.0.root")
{
  SetAtlasStyle();



  TFile* file =  TFile::Open(fname);
  RooWorkspace* wspace = (RooWorkspace*) file->Get("wspace");

  cout << "\n\ncheck that eff and reco terms included in BSM component to make fiducial cross-section" <<endl;
  wspace->function("nsig")->Print();
  RooRealVar* reco = wspace->var("reco");
  if(  wspace->function("nsig")->dependsOn(*reco) ) {
    cout << "all good." <<endl;
  } else {
    cout << "need to rerun fit_withsm using DO_FIDUCIAL_LIMIT true" <<endl;
    return;
  }

  /*
  // DANGER
  // TEST WITH EXAGGERATED UNCERTAINTY
  wspace->var("unc_theory")->setMax(1);
  wspace->var("unc_theory")->setVal(1);
  wspace->var("unc_theory")->Print();
  */

  // this was for making plot about decoupling/recoupling approach
  TCanvas* tc = new TCanvas("tc","",400,400);
  RooPlot *frame = wspace->var("xsec_bsm")->frame();
  RooAbsPdf* pdfc = wspace->pdf("jointModeld");
  RooAbsData* data = wspace->data("data");
  RooAbsReal *nllJoint = pdfc->createNLL(*data, RooFit::Constrained()); // slice with fixed xsec_bsm
  RooAbsReal *profileJoint = nllJoint->createProfile(*wspace->var("xsec_bsm"));

  wspace->allVars().Print("v");
  pdfc->fitTo(*data);
  wspace->allVars().Print("v");
  wspace->var("xsec_bsm")->Print();
  double nllmin = 2*nllJoint->getVal();
  wspace->var("xsec_bsm")->setVal(0);
  double nll0 = 2*nllJoint->getVal();
  cout << Form("nllmin = %f, nll0 = %f, Z=%f", nllmin, nll0, sqrt(nll0-nllmin)) << endl;
  nllJoint->plotOn(frame, RooFit::LineColor(kGreen), RooFit::LineStyle(kDotted), RooFit::ShiftToZero(), RooFit::Name("nll_statonly")); // no error
  profileJoint->plotOn(frame,RooFit::Name("pll") );
  wspace->var("xsec_sm")->Print();
  wspace->var("theory")->Print();
  wspace->var("theory")->setConstant();
  profileJoint->plotOn(frame, RooFit::LineColor(kRed), RooFit::LineStyle(kDashed), RooFit::Name("pll_smfixed") );

  frame->GetXaxis()->SetTitle("#sigma_{BSM, fid} [fb]");
  frame->GetYaxis()->SetTitle("-log #lambda  ( #sigma_{BSM, fid} )");
  double temp = frame->GetYaxis()->GetTitleOffset();
  frame->GetYaxis()->SetTitleOffset( 1.1* temp );

  frame->SetMinimum(1e-7);
  frame->SetMaximum(4);


  // Legend
  double x1,y1,x2,y2;
  GetX1Y1X2Y2(tc,x1,y1,x2,y2);
  TLegend *legend_sr=FastLegend(x2-0.75,y2-0.3,x2-0.25,y2-0.5,0.045);
  legend_sr->AddEntry(frame->findObject("pll"),"with #sigma_{SM} uncertainty","L");
  legend_sr->AddEntry(frame->findObject("pll_smfixed"),"with #sigma_{SM} constant","L");
  legend_sr->AddEntry(frame->findObject("nll_statonly"),"no systematics","L");
  frame->Draw();
  legend_sr->Draw("SAME");



  // descriptive text
  vector<TString> pavetext11;
  pavetext11.push_back("#bf{#it{ATLAS Internal}}");
  pavetext11.push_back("#sqrt{#it{s}} = 8 TeV #scale[0.6]{#int}Ldt = 20.3 fb^{-1}");
  pavetext11.push_back("#it{H}+#it{E}_{T}^{miss} , #it{H #rightarrow #gamma#gamma}, #it{m}_{#it{H}} = 125.4 GeV");

  TPaveText* text11=CreatePaveText(x2-0.75,y2-0.25,x2-0.25,y2-0.05,pavetext11,0.045);
  text11->Draw();

  tc->SaveAs("pll.pdf");



  /*
  wspace->var("xsec_bsm")->setConstant(true);
  wspace->var("eff"     )->setConstant(true);
  wspace->var("mh"      )->setConstant(true);
  wspace->var("sigma_h" )->setConstant(true);
  wspace->var("lumi"    )->setConstant(true);
  wspace->var("xsec_sm" )->setVal(v_xsec_sm);
  wspace->var("eff"     )->setVal(1.0);
  wspace->var("lumi"    )->setVal(v_lumi);
  TH1* nllHist = profileJoint->createHistogram("xsec_bsm",100);
  TFile* out = new TFile("nllHist.root","REPLACE");
  nllHist->Write()
  out->Write();
  out->Close();
  */

}
示例#10
0
int main(){

  /*Toy Model with following True parameters
    Guess 20 events in Lb->pketa' (1)
    and 15 events in Lb->pketa'->pipieta (2)
    Lb Efficiencies=0.0002637
    B+ Efficiency=0.000411 (3)
    B(eta'->pi pi g)=0.291
    B(eta'->pi pi eta)=0.16
    fd/fL= 2.5
   */
  
  int GenRare=40;
  int GenRare2=30;
  int GenControl=11000;
  
  RooRealVar Mode2EfficiencyRatio("Mode2EfficiencyRatio","Mode2EfficiencyRatio",1.558589);
  RooRealVar ModeEfficiencyRatio("ModeEfficiencyRatio","ModeEfficiencyRatio",1.558589);
  RooRealVar SubBRRatio("SubBRRatio","SubBRRatio",0.645);
  RooRealVar fdFl("fdFl","fdFl",2.5);
  RooRealVar YieldRatio("YieldRatio","YieldRatio",0.1,0.000001,1.0);
  RooRealVar YieldRatio2("YieldRatio2","YieldRatio2",0.1,0.000001,1.0);


  //RooFormulaVar ObservableBFRatio("ObservableBFRatio","ObservableBFRatio","((@0*@1)+(@2*@3))*@4*@5",RooArgSet(YieldRatio,ModeEfficiencyRatio,YieldRatio2,Mode2EfficiencyRatio,SubBRRatio,fdFl));
  RooRealVar ObservableBFRatio("ObservableBFRatio","ObservableBFRatio",0.5,0.00000001,10.0);
  
  //  RooRealVar ControlYield("ControlYield","ControlYield",10000.0,0.0,20000.0);
  //RooRealVar RareYield("RareYield","RareYield",30.0,0.0,1100.0);

  
  //RooFormulaVar RareArg("RareArg","RareArg","@1*@2",RooArgSet(ControlYield,YieldRatio));
  RooRealVar ControlMean("ControlMean","ControlMean",5279.0,5200.0,5350.0);
  RooRealVar SigmaCorrection("SigmaCorrection","SigmaCorrection",1.1,0.9,1.8);
  RooRealVar LambdaMass("LambdaMass","LambdaMass",5000,6200.0);
  //  RooRealVar RareMean("RareMean","RareMean",5619.0,5600.0,5650.0);
  RooFormulaVar RareMean("RareMean","RareMean","@0+339.72",RooArgSet(ControlMean));
  RooRealVar MCRareSigma("MCRareSigma","MCRareSigma",25.0);
  //  RooRealVar RareSigma("RareSigma","RareSigma",29.0,20.0,40.0);
  RooFormulaVar RareSigma("RareSigma","RareSigma","@0*@1",RooArgSet(MCRareSigma,SigmaCorrection));
  RooGaussian RareMode("RareMode","RareMode",LambdaMass,RareMean,RareSigma);

  RooRealVar K("K","K",-0.003,-0.010,-0.001);
  RooExponential RareBkg("RareBkg","RareBkg",LambdaMass,K);
  
  RooRealVar RareBkgYield("RareBkgYield","RareBkgYield",1000.0,0.0,2000.0);
  RooExtendPdf ExtRareBkg("ExtRareBkg","ExtRareBkg",RareBkg,RareBkgYield);
  
  //  RooFormulaVar RareYield("RareYield","RareYield","@0*@1",RooArgSet(ControlYield,YieldRatio));
  RooRealVar RareYield("RareYield","RareYield",1.0,0.0,600.0);
  RooExtendPdf ExtRareSig("ExtRareSig","ExtRareSig",RareMode,RareYield);

  RooAddPdf ExtRare("ExtRare","ExtRare",RooArgSet(ExtRareSig,ExtRareBkg));

  RooDataSet* RareSigData=RareMode.generate(RooArgSet(LambdaMass),GenRare);
  RooDataSet* RareBkgData=RareBkg.generate(RooArgSet(LambdaMass),500);
  RooDataSet* RareData= new RooDataSet(*RareSigData,"RareData");
  RareData->append(*RareBkgData);
  
  RooRealVar MCRare2Sigma("MCRare2Sigma","MCRare2Sigma",17.0);
  //RooRealVar Rare2Sigma("Rare2Sigma","Rare2Sigma",20.0,10.0,30.0);
  RooFormulaVar Rare2Sigma("Rare2Sigma","Rare2Sigma","@0*@1",RooArgSet(MCRare2Sigma,SigmaCorrection));
  RooGaussian RareMode2("RareMode2","RareMode2",LambdaMass,RareMean,Rare2Sigma);
  RooDataSet* RareData2=RareMode2.generate(RooArgSet(LambdaMass),GenRare2);
  
  
  //RooFormulaVar RareYield2("RareYield2","RareYield2","@0*@1",RooArgSet(ControlYield,YieldRatio2));
  //RooFormulaVar RareYield2("RareYield2","RareYield2","(ControlYield*(1/Mode2EfficiencyRatio))*((ObservableBFRatio/(SubBRRatio*fdFl))-(YieldRatio*ModeEfficiencyRatio))",RooArgSet(ControlYield,Mode2EfficiencyRatio,ObservableBFRatio,SubBRRatio,fdFl,YieldRatio,ModeEfficiencyRatio));
  RooRealVar RareYield2("RareYield2","RareYield2",1.0,0.0,100.0);
  RooExtendPdf ExtRare2("ExtRare2","ExtRare2",RareMode2,RareYield2);
  
  RooRealVar BMass("BMass","BMass",5000.0,5500.0);					
  
  //  RooFormulaVar ControlMean("ControlMean","ControlMean","@0-339.72",RooArgSet(RareMean));
  RooRealVar MCControlSigma("MCControlSigma","MCControlSigma",17.0);
  RooFormulaVar ControlSigma("ControlSigma","ControlSigma","@0*@1",RooArgSet(MCControlSigma,SigmaCorrection));
  //RooRealVar ControlSigma("ControlSigma","ControlSigma",20.0,10.0,40.0);
  RooGaussian ControlMode("ControlMode","ControlMode",BMass,ControlMean,ControlSigma);
  RooFormulaVar ControlYield("ControlYield","ControlYield","(1/ObservableBFRatio)*((ModeEfficiencyRatio*RareYield)+(Mode2EfficiencyRatio*RareYield2))*SubBRRatio*fdFl",RooArgSet(ObservableBFRatio,ModeEfficiencyRatio,RareYield,Mode2EfficiencyRatio,RareYield2,SubBRRatio,fdFl));
  RooExtendPdf ExtControl("ExtControl","ExtControl",ControlMode,ControlYield);

    
  RooDataSet* ControlData=ControlMode.generate(RooArgSet(BMass),GenControl);
  
  RooCategory Mode("Mode","Mode");
  Mode.defineType("Rare");
  Mode.defineType("Rare2");
  Mode.defineType("Control");

  RooDataSet CombData("CombData","CombData",RooArgSet(BMass,LambdaMass),Index(Mode),Import("Rare2",*RareData2),Import("Rare",*RareData),Import("Control",*ControlData));

  RooSimultaneous SimPdf("SimPdf","SimPdf",Mode);
  SimPdf.addPdf(ExtRare,"Rare");
  SimPdf.addPdf(ExtRare2,"Rare2");
  SimPdf.addPdf(ExtControl,"Control");

  RooFitResult* SimResult=SimPdf.fitTo(CombData,Save(kTRUE),Minos(kTRUE));
  /*  double FreeYield=-1*SimResult->minNll();
  std::cout<<"With free yield = "<<SimResult->minNll()<<std::endl;
  RareYield.setVal(0);
  RareYield.setConstant(kTRUE);
  RooFitResult* Rare1Fixed=SimPdf.fitTo(CombData,Save(kTRUE),Minos(kTRUE));
  double NullYield=-1*Rare1Fixed->minNll();
  std::cout<<"With not free yield = "<<Rare1Fixed->minNll()<<std::endl;

  double DeltaLogLikelihood=NullYield-FreeYield;
  std::cout<<"DeltaNll= "<<DeltaLogLikelihood<<std::endl;
  double Significance=TMath::Sqrt(-2*DeltaLogLikelihood); 
  std::cout<<"Significance= "<<Significance<<std::endl;
  SimPdf.fitTo(CombData,Save(kTRUE),Minos(kTRUE));*/

  
  RooPlot* BFrame= BMass.frame(Bins(50),Title("B Mass"),Range(5200.0,5400.0));
  ControlData->plotOn(BFrame);
  ControlMode.plotOn(BFrame);

  RooPlot* LambdaFrame = LambdaMass.frame(Bins(50),Title("Lambda mass"),Range(5200.0,6100.0));
  RareData->plotOn(LambdaFrame);
  ExtRare.plotOn(LambdaFrame);

  RooPlot* LambdaFrame2 = LambdaMass.frame(Bins(50),Title("Lambda mass"),Range(5200.0,6100.0));
  RareData2->plotOn(LambdaFrame2);
  RareMode2.plotOn(LambdaFrame2);
  
  TCanvas BCanvas;
  BFrame->Draw();
  BCanvas.SaveAs("BCanvas.pdf");

  TCanvas LambdaCanvas;
  LambdaFrame->Draw();
  LambdaCanvas.SaveAs("LambdaCanvas.pdf");

  TCanvas LambdaCanvas2;
  LambdaFrame2->Draw();
  LambdaCanvas2.SaveAs("LambdaCanvas2.pdf");
  

  SimResult->Print("v");

  // S imPdf.graphVizTree("model.dot");
  std::cout<<"Real Ratio = "<<GenRare/(double)GenControl<<std::endl;
  ObservableBFRatio.Print("v");
  

  std::cout<<"Lb BF = "<<ObservableBFRatio.getVal()*7.06E-5<<" + "<<ObservableBFRatio.getErrorHi()*7.06E-5<<" - "<<ObservableBFRatio.getErrorLo()*7.06E-5<<std::endl;
  

  //________________________________________________ATTEMPT TO SWEIGHT____________________________________________
  
  RooStats::SPlot* sDataMass = new RooStats::SPlot("sData","An SPlot",*RareData,&ExtRare,RooArgList(RareYield,RareBkgYield));
  std::cout << std::endl <<  "Yield of signal is " << RareYield.getVal() << ".  From sWeights it is " << sDataMass->GetYieldFromSWeight("RareYield") << std::endl;
  std::cout << "Yield of background is " << RareBkgYield.getVal() << ".  From sWeights it is " << sDataMass->GetYieldFromSWeight("RareBkgYield") << std::endl << std::endl;

  RooAbsReal* nll = SimPdf.createNLL(CombData);
  RooMinuit(*nll).migrad();
  
  RooPlot* LLFrame=ObservableBFRatio.frame(Title("Some Title"),Range(0.005,0.03));
  nll->plotOn(LLFrame,ShiftToZero());
  LLFrame->GetYaxis()->SetRangeUser(0.0,1000.0);

  TCanvas LLCanvas;
  LLFrame->Draw();
  LLCanvas.SaveAs("LLCanvas.pdf");
}
示例#11
0
void rf605_profilell()
{
  // C r e a t e   m o d e l   a n d   d a t a s e t 
  // -----------------------------------------------

  // Observable
  RooRealVar x("x","x",-20,20) ;

  // Model (intentional strong correlations)
  RooRealVar mean("mean","mean of g1 and g2",0,-10,10) ;
  RooRealVar sigma_g1("sigma_g1","width of g1",3) ;
  RooGaussian g1("g1","g1",x,mean,sigma_g1) ;

  RooRealVar sigma_g2("sigma_g2","width of g2",4,3.0,6.0) ;
  RooGaussian g2("g2","g2",x,mean,sigma_g2) ;

  RooRealVar frac("frac","frac",0.5,0.0,1.0) ;
  RooAddPdf model("model","model",RooArgList(g1,g2),frac) ;

  // Generate 1000 events
  RooDataSet* data = model.generate(x,1000) ;
  


  // C o n s t r u c t   p l a i n   l i k e l i h o o d
  // ---------------------------------------------------

  // Construct unbinned likelihood
  RooAbsReal* nll = model.createNLL(*data,NumCPU(2)) ;

  // Minimize likelihood w.r.t all parameters before making plots
  RooMinuit(*nll).migrad() ;

  // Plot likelihood scan frac 
  RooPlot* frame1 = frac.frame(Bins(10),Range(0.01,0.95),Title("LL and profileLL in frac")) ;
  nll->plotOn(frame1,ShiftToZero()) ;

  // Plot likelihood scan in sigma_g2
  RooPlot* frame2 = sigma_g2.frame(Bins(10),Range(3.3,5.0),Title("LL and profileLL in sigma_g2")) ;
  nll->plotOn(frame2,ShiftToZero()) ;



  // C o n s t r u c t   p r o f i l e   l i k e l i h o o d   i n   f r a c
  // -----------------------------------------------------------------------

  // The profile likelihood estimator on nll for frac will minimize nll w.r.t
  // all floating parameters except frac for each evaluation

  RooAbsReal* pll_frac = nll->createProfile(frac) ;

  // Plot the profile likelihood in frac
  pll_frac->plotOn(frame1,LineColor(kRed)) ;

  // Adjust frame maximum for visual clarity
  frame1->SetMinimum(0) ;
  frame1->SetMaximum(3) ;



  // C o n s t r u c t   p r o f i l e   l i k e l i h o o d   i n   s i g m a _ g 2 
  // -------------------------------------------------------------------------------

  // The profile likelihood estimator on nll for sigma_g2 will minimize nll
  // w.r.t all floating parameters except sigma_g2 for each evaluation
  RooAbsReal* pll_sigmag2 = nll->createProfile(sigma_g2) ;

  // Plot the profile likelihood in sigma_g2
  pll_sigmag2->plotOn(frame2,LineColor(kRed)) ;

  // Adjust frame maximum for visual clarity
  frame2->SetMinimum(0) ;
  frame2->SetMaximum(3) ;



  // Make canvas and draw RooPlots
  TCanvas *c = new TCanvas("rf605_profilell","rf605_profilell",800, 400);
  c->Divide(2);
  c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame1->GetYaxis()->SetTitleOffset(1.4) ; frame1->Draw() ;
  c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;

  delete pll_frac ;
  delete pll_sigmag2 ;
  delete nll ;
}