TEST (EkfTest, Measurements) { RosEkfPassThrough ekf; Eigen::VectorXd measurement(STATE_SIZE); for(size_t i = 0; i < STATE_SIZE; ++i) { measurement[i] = i; } Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE); for(size_t i = 0; i < STATE_SIZE; ++i) { measurementCovariance(i, i) = 0.5; } std::vector<int> updateVector(STATE_SIZE, true); // Ensure that measurements are being placed in the queue correctly ros::Time time; time.fromSec(1000); ekf.enqueueMeasurement("odom0", measurement, measurementCovariance, updateVector, time); std::map<std::string, Eigen::VectorXd> postUpdateStates; ekf.integrateMeasurements(1001); EXPECT_EQ(ekf.getFilter().getState(), measurement); EXPECT_EQ(ekf.getFilter().getEstimateErrorCovariance(), measurementCovariance); // Now fuse another measurement and check the output. // We know what the filter's state should be when // this is complete, so we'll check the difference and // make sure it's suitably small. Eigen::VectorXd measurement2 = measurement; measurement2 *= 2.0; time.fromSec(1002); ekf.enqueueMeasurement("odom0", measurement2, measurementCovariance, updateVector, time); ekf.integrateMeasurements(1003); measurement[0] = -4.5198; measurement[1] = 0.14655; measurement[2] = 9.4514; measurement[3] = -2.8688; measurement[4] = -2.2672; measurement[5] = 0.12861; measurement[6] = 15.481; measurement[7] = 17.517; measurement[8] = 19.587; measurement[9] = 9.8351; measurement[10] = 12.73; measurement[11] = 13.87; measurement[12] = 10.978; measurement[13] = 12.008; measurement[14] = 13.126; measurement = measurement.eval() - ekf.getFilter().getState(); for(size_t i = 0; i < STATE_SIZE; ++i) { EXPECT_LT(::fabs(measurement[i]), 0.001); } }
TEST (EkfTest, Measurements) { RosEkfPassThrough ekf; Eigen::MatrixXd initialCovar(15, 15); initialCovar.setIdentity(); initialCovar *= 0.5; ekf.getFilter().setEstimateErrorCovariance(initialCovar); Eigen::VectorXd measurement(STATE_SIZE); for(size_t i = 0; i < STATE_SIZE; ++i) { measurement[i] = i * 0.01 * STATE_SIZE; } Eigen::MatrixXd measurementCovariance(STATE_SIZE, STATE_SIZE); for(size_t i = 0; i < STATE_SIZE; ++i) { measurementCovariance(i, i) = 1e-9; } std::vector<int> updateVector(STATE_SIZE, true); // Ensure that measurements are being placed in the queue correctly ros::Time time; time.fromSec(1000); ekf.enqueueMeasurement("odom0", measurement, measurementCovariance, updateVector, std::numeric_limits<double>::max(), time); ekf.integrateMeasurements(1001); EXPECT_EQ(ekf.getFilter().getState(), measurement); EXPECT_EQ(ekf.getFilter().getEstimateErrorCovariance(), measurementCovariance); ekf.getFilter().setEstimateErrorCovariance(initialCovar); // Now fuse another measurement and check the output. // We know what the filter's state should be when // this is complete, so we'll check the difference and // make sure it's suitably small. Eigen::VectorXd measurement2 = measurement; measurement2 *= 2.0; for(size_t i = 0; i < STATE_SIZE; ++i) { measurementCovariance(i, i) = 1e-9; } time.fromSec(1002); ekf.enqueueMeasurement("odom0", measurement2, measurementCovariance, updateVector, std::numeric_limits<double>::max(), time); ekf.integrateMeasurements(1003); measurement = measurement2.eval() - ekf.getFilter().getState(); for(size_t i = 0; i < STATE_SIZE; ++i) { EXPECT_LT(::fabs(measurement[i]), 0.001); } }