/** * Function NormalizeAreaOutlines * Convert a self-intersecting polygon to one (or more) non self-intersecting polygon(s) * @param aNewPolygonList = a std::vector<CPolyLine*> reference where to store new CPolyLine * needed by the normalization * @return the polygon count (always >= 1, because there is at least one polygon) * There are new polygons only if the polygon count is > 1 */ int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* aNewPolygonList ) { SHAPE_POLY_SET polySet = ConvertPolyListToPolySet( m_CornersList ); // We are expecting only one main outline, but this main outline can have holes // if holes: combine holes and remove them from the main outline. // Note also we are using SHAPE_POLY_SET::PM_STRICTLY_SIMPLE in polygon // calculations, but it is not mandatory. It is used mainly // because there is usually only very few vertices in area outlines SHAPE_POLY_SET::POLYGON& outline = polySet.Polygon( 0 ); SHAPE_POLY_SET holesBuffer; // Move holes stored in outline to holesBuffer: // The first SHAPE_LINE_CHAIN is the main outline, others are holes while( outline.size() > 1 ) { holesBuffer.AddOutline( outline.back() ); outline.pop_back(); } polySet.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE); // If any hole, substract it to main outline if( holesBuffer.OutlineCount() ) { holesBuffer.Simplify( SHAPE_POLY_SET::PM_FAST); polySet.BooleanSubtract( holesBuffer, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); } RemoveAllContours(); // Note: we can have more than outline, because a self intersecting outline will be // broken to non intersecting polygons, and removing holes can also create a few polygons for( int ii = 0; ii < polySet.OutlineCount(); ii++ ) { CPolyLine* polyline = this; if( ii > 0 ) { polyline = new CPolyLine; polyline->ImportSettings( this ); aNewPolygonList->push_back( polyline ); } SHAPE_POLY_SET pnew; pnew.NewOutline(); pnew.Polygon( 0 ) = polySet.CPolygon( ii ); polyline->m_CornersList = ConvertPolySetToPolyList( pnew ); } return polySet.OutlineCount(); }
// This is the same function as in board_items_to_polygon_shape_transform.cpp // but it adds the rect/trapezoid shapes with a different winding void CINFO3D_VISU::buildPadShapePolygon( const D_PAD* aPad, SHAPE_POLY_SET& aCornerBuffer, wxSize aInflateValue, int aSegmentsPerCircle, double aCorrectionFactor ) const { wxPoint corners[4]; wxPoint PadShapePos = aPad->ShapePos(); /* Note: for pad having a shape offset, * the pad position is NOT the shape position */ switch( aPad->GetShape() ) { case PAD_SHAPE_CIRCLE: case PAD_SHAPE_OVAL: case PAD_SHAPE_ROUNDRECT: aPad->TransformShapeWithClearanceToPolygon( aCornerBuffer, aInflateValue.x, aSegmentsPerCircle, aCorrectionFactor ); break; case PAD_SHAPE_TRAPEZOID: case PAD_SHAPE_RECT: { SHAPE_LINE_CHAIN aLineChain; aPad->BuildPadPolygon( corners, aInflateValue, aPad->GetOrientation() ); for( int ii = 0; ii < 4; ++ii ) { corners[3-ii] += PadShapePos; // Shift origin to position aLineChain.Append( corners[3-ii].x, corners[3-ii].y ); } aLineChain.SetClosed( true ); aCornerBuffer.AddOutline( aLineChain ); } break; default: wxFAIL_MSG( wxT( "CINFO3D_VISU::buildPadShapePolygon: found a not implemented pad shape (new shape?)" ) ); break; } }
void Convert_path_polygon_to_polygon_blocks_and_dummy_blocks( const SHAPE_POLY_SET &aMainPath, CGENERICCONTAINER2D &aDstContainer, float aBiuTo3DunitsScale, float aDivFactor, const BOARD_ITEM &aBoardItem ) { BOX2I pathBounds = aMainPath.BBox(); // Get the path wxASSERT( aMainPath.OutlineCount() == 1 ); const SHAPE_POLY_SET::POLYGON& curr_polywithholes = aMainPath.CPolygon( 0 ); wxASSERT( curr_polywithholes.size() == 1 ); const SHAPE_LINE_CHAIN& path = curr_polywithholes[0]; // a simple polygon // Convert the points to segments class CBBOX2D bbox; bbox.Reset(); // Contains the main list of segments and each segment normal interpolated SEGMENTS_WIDTH_NORMALS segments_and_normals; // Contains a closed polygon used to calc if points are inside SEGMENTS segments; segments_and_normals.resize( path.PointCount() ); segments.resize( path.PointCount() ); for( int i = 0; i < path.PointCount(); i++ ) { const VECTOR2I& a = path.CPoint( i ); const SFVEC2F point ( (float)( a.x) * aBiuTo3DunitsScale, (float)(-a.y) * aBiuTo3DunitsScale ); bbox.Union( point ); segments_and_normals[i].m_Start = point; segments[i].m_Start = point; } bbox.ScaleNextUp(); // Calc the slopes, normals and some statistics about this polygon unsigned int i; unsigned int j = segments_and_normals.size() - 1; // Temporary normal to the segment, it will later be used for interpolation std::vector< SFVEC2F > tmpSegmentNormals; tmpSegmentNormals.resize( segments_and_normals.size() ); float medOfTheSquaresSegmentLength = 0.0f; #ifdef PRINT_STATISTICS_3D_VIEWER float minLength = FLT_MAX; #endif for( i = 0; i < segments_and_normals.size(); j = i++ ) { const SFVEC2F slope = segments_and_normals[j].m_Start - segments_and_normals[i].m_Start; segments_and_normals[i].m_Precalc_slope = slope; // Calculate constants for each segment segments[i].m_inv_JY_minus_IY = 1.0f / ( segments_and_normals[j].m_Start.y - segments_and_normals[i].m_Start.y ); segments[i].m_JX_minus_IX = ( segments_and_normals[j].m_Start.x - segments_and_normals[i].m_Start.x ); // The normal orientation expect a fixed polygon orientation (!TODO: which one?) //tmpSegmentNormals[i] = glm::normalize( SFVEC2F( -slope.y, +slope.x ) ); tmpSegmentNormals[i] = glm::normalize( SFVEC2F( slope.y, -slope.x ) ); const float length = slope.x * slope.x + slope.y * slope.y; #ifdef PRINT_STATISTICS_3D_VIEWER if( length < minLength ) minLength = length; #endif medOfTheSquaresSegmentLength += length; } #ifdef PRINT_STATISTICS_3D_VIEWER float minSegmentLength = sqrt( minLength ); #endif // This calc an approximation of medium lengths, that will be used to calc // the size of the division. medOfTheSquaresSegmentLength /= segments_and_normals.size(); medOfTheSquaresSegmentLength = sqrt( medOfTheSquaresSegmentLength ); // Compute the normal interpolation // If calculate the dot between the segments, if they are above/below some // threshould it will not interpolated it (ex: if you are in a edge corner // or in a smooth transaction) j = segments_and_normals.size() - 1; for( i = 0; i < segments_and_normals.size(); j = i++ ) { const SFVEC2F normalBeforeSeg = tmpSegmentNormals[j]; const SFVEC2F normalSeg = tmpSegmentNormals[i]; const SFVEC2F normalAfterSeg = tmpSegmentNormals[ (i + 1) % segments_and_normals.size() ]; const float dotBefore = glm::dot( normalBeforeSeg, normalSeg ); const float dotAfter = glm::dot( normalAfterSeg, normalSeg ); if( dotBefore < 0.7f ) segments_and_normals[i].m_Normals.m_Start = normalSeg; else segments_and_normals[i].m_Normals.m_Start = glm::normalize( (((normalBeforeSeg * dotBefore ) + normalSeg) * 0.5f) ); if( dotAfter < 0.7f ) segments_and_normals[i].m_Normals.m_End = normalSeg; else segments_and_normals[i].m_Normals.m_End = glm::normalize( (((normalAfterSeg * dotAfter ) + normalSeg) * 0.5f) ); } if( aDivFactor == 0.0f ) aDivFactor = medOfTheSquaresSegmentLength; SFVEC2UI grid_divisions; grid_divisions.x = (unsigned int)( (bbox.GetExtent().x / aDivFactor) ); grid_divisions.y = (unsigned int)( (bbox.GetExtent().y / aDivFactor) ); grid_divisions = glm::clamp( grid_divisions , SFVEC2UI( 1, 1 ), SFVEC2UI( MAX_NR_DIVISIONS, MAX_NR_DIVISIONS ) ); // Calculate the steps advance of the grid SFVEC2F blockAdvance; blockAdvance.x = bbox.GetExtent().x / (float)grid_divisions.x; blockAdvance.y = bbox.GetExtent().y / (float)grid_divisions.y; wxASSERT( blockAdvance.x > 0.0f ); wxASSERT( blockAdvance.y > 0.0f ); const int leftToRight_inc = (pathBounds.GetRight() - pathBounds.GetLeft()) / grid_divisions.x; const int topToBottom_inc = (pathBounds.GetBottom() - pathBounds.GetTop()) / grid_divisions.y; // Statistics unsigned int stats_n_empty_blocks = 0; unsigned int stats_n_dummy_blocks = 0; unsigned int stats_n_poly_blocks = 0; unsigned int stats_sum_size_of_polygons = 0; // Step by each block of a grid trying to extract segments and create // polygon blocks int topToBottom = pathBounds.GetTop(); float blockY = bbox.Max().y; for( unsigned int iy = 0; iy < grid_divisions.y; iy++ ) { int leftToRight = pathBounds.GetLeft(); float blockX = bbox.Min().x; for( unsigned int ix = 0; ix < grid_divisions.x; ix++ ) { CBBOX2D blockBox( SFVEC2F( blockX, blockY - blockAdvance.y ), SFVEC2F( blockX + blockAdvance.x, blockY ) ); // Make the box large to it will catch (intersect) the edges blockBox.ScaleNextUp(); blockBox.ScaleNextUp(); blockBox.ScaleNextUp(); SEGMENTS_WIDTH_NORMALS extractedSegments; extractPathsFrom( segments_and_normals, blockBox, extractedSegments ); if( extractedSegments.empty() ) { SFVEC2F p1( blockBox.Min().x, blockBox.Min().y ); SFVEC2F p2( blockBox.Max().x, blockBox.Min().y ); SFVEC2F p3( blockBox.Max().x, blockBox.Max().y ); SFVEC2F p4( blockBox.Min().x, blockBox.Max().y ); if( polygon_IsPointInside( segments, p1 ) || polygon_IsPointInside( segments, p2 ) || polygon_IsPointInside( segments, p3 ) || polygon_IsPointInside( segments, p4 ) ) { // In this case, the segments are not intersecting the // polygon, so it means that if any point is inside it, // then all other are inside the polygon. // This is a full bbox inside, so add a dummy box aDstContainer.Add( new CDUMMYBLOCK2D( blockBox, aBoardItem ) ); stats_n_dummy_blocks++; } else { // Points are outside, so this block complety missed the polygon // In this case, no objects need to be added stats_n_empty_blocks++; } } else { // At this point, the borders of polygon were intersected by the // bounding box, so we must calculate a new polygon that will // close that small block. // This block will be used to calculate if points are inside // the (sub block) polygon. SHAPE_POLY_SET subBlockPoly; SHAPE_LINE_CHAIN sb = SHAPE_LINE_CHAIN( VECTOR2I( leftToRight, topToBottom ), VECTOR2I( leftToRight + leftToRight_inc, topToBottom ), VECTOR2I( leftToRight + leftToRight_inc, topToBottom + topToBottom_inc ), VECTOR2I( leftToRight, topToBottom + topToBottom_inc ) ); //sb.Append( leftToRight, topToBottom ); sb.SetClosed( true ); subBlockPoly.AddOutline( sb ); // We need here a strictly simple polygon with outlines and holes SHAPE_POLY_SET solution; solution.BooleanIntersection( aMainPath, subBlockPoly, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE ); OUTERS_AND_HOLES outersAndHoles; outersAndHoles.m_Holes.clear(); outersAndHoles.m_Outers.clear(); for( int idx = 0; idx < solution.OutlineCount(); idx++ ) { const SHAPE_LINE_CHAIN & outline = solution.Outline( idx ); SEGMENTS solutionSegment; polygon_Convert( outline, solutionSegment, aBiuTo3DunitsScale ); outersAndHoles.m_Outers.push_back( solutionSegment ); stats_sum_size_of_polygons += solutionSegment.size(); for( int holeIdx = 0; holeIdx < solution.HoleCount( idx ); holeIdx++ ) { const SHAPE_LINE_CHAIN & hole = solution.Hole( idx, holeIdx ); polygon_Convert( hole, solutionSegment, aBiuTo3DunitsScale ); outersAndHoles.m_Holes.push_back( solutionSegment ); stats_sum_size_of_polygons += solutionSegment.size(); } } if( !outersAndHoles.m_Outers.empty() ) { aDstContainer.Add( new CPOLYGONBLOCK2D( extractedSegments, outersAndHoles, aBoardItem ) ); stats_n_poly_blocks++; } } blockX += blockAdvance.x; leftToRight += leftToRight_inc; } blockY -= blockAdvance.y; topToBottom += topToBottom_inc; } #ifdef PRINT_STATISTICS_3D_VIEWER printf( "////////////////////////////////////////////////////////////////////////////////\n" ); printf( "Convert_path_polygon_to_polygon_blocks_and_dummy_blocks\n" ); printf( " grid_divisions (%u, %u)\n", grid_divisions.x, grid_divisions.y ); printf( " N Total Blocks %u\n", grid_divisions.x * grid_divisions.y ); printf( " N Empty Blocks %u\n", stats_n_empty_blocks ); printf( " N Dummy Blocks %u\n", stats_n_dummy_blocks ); printf( " N Polyg Blocks %u\n", stats_n_poly_blocks ); printf( " Med N Seg Poly %u\n", stats_sum_size_of_polygons / stats_n_poly_blocks ); printf( " medOfTheSquaresSegmentLength %f\n", medOfTheSquaresSegmentLength ); printf( " minSegmentLength %f\n", minSegmentLength ); printf( " aDivFactor %f\n", aDivFactor ); printf( "////////////////////////////////////////////////////////////////////////////////\n" ); #endif }