示例#1
0
std::pair<Optional<SILValue>, SILLocation>
SILGenFunction::emitEpilogBB(SILLocation TopLevel) {
  assert(ReturnDest.getBlock() && "no epilog bb prepared?!");
  SILBasicBlock *epilogBB = ReturnDest.getBlock();
  SILLocation ImplicitReturnFromTopLevel =
    ImplicitReturnLocation::getImplicitReturnLoc(TopLevel);
  SILValue returnValue;
  Optional<SILLocation> returnLoc = None;

  // If the current BB isn't terminated, and we require a return, then we
  // are not allowed to fall off the end of the function and can't reach here.
  if (NeedsReturn && B.hasValidInsertionPoint())
    B.createUnreachable(ImplicitReturnFromTopLevel);

  if (epilogBB->pred_empty()) {
    bool hadArg = !epilogBB->bbarg_empty();

    // If the epilog was not branched to at all, kill the BB and
    // just emit the epilog into the current BB.
    while (!epilogBB->empty())
      epilogBB->back().eraseFromParent();
    eraseBasicBlock(epilogBB);

    // If the current bb is terminated then the epilog is just unreachable.
    if (!B.hasValidInsertionPoint())
      return { None, TopLevel };
    // We emit the epilog at the current insertion point.
    assert(!hadArg && "NeedsReturn is false but epilog had argument?!");
    (void)hadArg;
    returnLoc = ImplicitReturnFromTopLevel;

  } else if (std::next(epilogBB->pred_begin()) == epilogBB->pred_end()
             && !B.hasValidInsertionPoint()) {
    // If the epilog has a single predecessor and there's no current insertion
    // point to fall through from, then we can weld the epilog to that
    // predecessor BB.
    bool needsArg = false;
    if (!epilogBB->bbarg_empty()) {
      assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
      needsArg = true;
    }

    // Steal the branch argument as the return value if present.
    SILBasicBlock *pred = *epilogBB->pred_begin();
    BranchInst *predBranch = cast<BranchInst>(pred->getTerminator());
    assert(predBranch->getArgs().size() == (needsArg ? 1 : 0) &&
           "epilog predecessor arguments does not match block params");

    if (needsArg) {
      returnValue = predBranch->getArgs()[0];
      // RAUW the old BB argument (if any) with the new value.
      SILValue(*epilogBB->bbarg_begin(),0).replaceAllUsesWith(returnValue);
    }

    // If we are optimizing, we should use the return location from the single,
    // previously processed, return statement if any.
    if (predBranch->getLoc().is<ReturnLocation>()) {
      returnLoc = predBranch->getLoc();
    } else {
      returnLoc = ImplicitReturnFromTopLevel;
    }
    
    // Kill the branch to the now-dead epilog BB.
    pred->erase(predBranch);

    // Move any instructions from the EpilogBB to the end of the 'pred' block.
    pred->spliceAtEnd(epilogBB);

    // Finally we can erase the epilog BB.
    eraseBasicBlock(epilogBB);

    // Emit the epilog into its former predecessor.
    B.setInsertionPoint(pred);
  } else {
    // Move the epilog block to the end of the ordinary section.
    auto endOfOrdinarySection =
      (StartOfPostmatter ? SILFunction::iterator(StartOfPostmatter) : F.end());
    B.moveBlockTo(epilogBB, endOfOrdinarySection);

    // Emit the epilog into the epilog bb. Its argument is the return value.
    if (!epilogBB->bbarg_empty()) {
      assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
      returnValue = epilogBB->bbarg_begin()[0];
    }

    // If we are falling through from the current block, the return is implicit.
    B.emitBlock(epilogBB, ImplicitReturnFromTopLevel);
  }
  
  // Emit top-level cleanups into the epilog block.
  assert(!Cleanups.hasAnyActiveCleanups(getCleanupsDepth(),
                                        ReturnDest.getDepth()) &&
         "emitting epilog in wrong scope");

  auto cleanupLoc = CleanupLocation::get(TopLevel);
  Cleanups.emitCleanupsForReturn(cleanupLoc);

  // If the return location is known to be that of an already
  // processed return, use it. (This will get triggered when the
  // epilog logic is simplified.)
  //
  // Otherwise make the ret instruction part of the cleanups.
  if (!returnLoc) returnLoc = cleanupLoc;

  return { returnValue, *returnLoc };
}
示例#2
0
std::pair<Optional<SILValue>, SILLocation>
SILGenFunction::emitEpilogBB(SILLocation TopLevel) {
  assert(ReturnDest.getBlock() && "no epilog bb prepared?!");
  SILBasicBlock *epilogBB = ReturnDest.getBlock();
  SILLocation ImplicitReturnFromTopLevel =
    ImplicitReturnLocation::getImplicitReturnLoc(TopLevel);
  SmallVector<SILValue, 4> directResults;
  Optional<SILLocation> returnLoc = None;

  // If the current BB isn't terminated, and we require a return, then we
  // are not allowed to fall off the end of the function and can't reach here.
  if (NeedsReturn && B.hasValidInsertionPoint())
    B.createUnreachable(ImplicitReturnFromTopLevel);

  if (epilogBB->pred_empty()) {
    // If the epilog was not branched to at all, kill the BB and
    // just emit the epilog into the current BB.
    while (!epilogBB->empty())
      epilogBB->back().eraseFromParent();
    eraseBasicBlock(epilogBB);

    // If the current bb is terminated then the epilog is just unreachable.
    if (!B.hasValidInsertionPoint())
      return { None, TopLevel };

    // We emit the epilog at the current insertion point.
    returnLoc = ImplicitReturnFromTopLevel;

  } else if (std::next(epilogBB->pred_begin()) == epilogBB->pred_end()
             && !B.hasValidInsertionPoint()) {
    // If the epilog has a single predecessor and there's no current insertion
    // point to fall through from, then we can weld the epilog to that
    // predecessor BB.

    // Steal the branch argument as the return value if present.
    SILBasicBlock *pred = *epilogBB->pred_begin();
    BranchInst *predBranch = cast<BranchInst>(pred->getTerminator());
    assert(predBranch->getArgs().size() == epilogBB->bbarg_size() &&
           "epilog predecessor arguments does not match block params");

    for (auto index : indices(predBranch->getArgs())) {
      SILValue result = predBranch->getArgs()[index];
      directResults.push_back(result);
      epilogBB->getBBArg(index)->replaceAllUsesWith(result);
    }

    // If we are optimizing, we should use the return location from the single,
    // previously processed, return statement if any.
    if (predBranch->getLoc().is<ReturnLocation>()) {
      returnLoc = predBranch->getLoc();
    } else {
      returnLoc = ImplicitReturnFromTopLevel;
    }
    
    // Kill the branch to the now-dead epilog BB.
    pred->erase(predBranch);

    // Move any instructions from the EpilogBB to the end of the 'pred' block.
    pred->spliceAtEnd(epilogBB);

    // Finally we can erase the epilog BB.
    eraseBasicBlock(epilogBB);

    // Emit the epilog into its former predecessor.
    B.setInsertionPoint(pred);
  } else {
    // Move the epilog block to the end of the ordinary section.
    auto endOfOrdinarySection = StartOfPostmatter;
    B.moveBlockTo(epilogBB, endOfOrdinarySection);

    // Emit the epilog into the epilog bb. Its arguments are the
    // direct results.
    directResults.append(epilogBB->bbarg_begin(), epilogBB->bbarg_end());

    // If we are falling through from the current block, the return is implicit.
    B.emitBlock(epilogBB, ImplicitReturnFromTopLevel);
  }
  
  // Emit top-level cleanups into the epilog block.
  assert(!Cleanups.hasAnyActiveCleanups(getCleanupsDepth(),
                                        ReturnDest.getDepth()) &&
         "emitting epilog in wrong scope");

  auto cleanupLoc = CleanupLocation::get(TopLevel);
  Cleanups.emitCleanupsForReturn(cleanupLoc);

  // If the return location is known to be that of an already
  // processed return, use it. (This will get triggered when the
  // epilog logic is simplified.)
  //
  // Otherwise make the ret instruction part of the cleanups.
  if (!returnLoc) returnLoc = cleanupLoc;

  // Build the return value.  We don't do this if there are no direct
  // results; this can happen for void functions, but also happens when
  // prepareEpilog was asked to not add result arguments to the epilog
  // block.
  SILValue returnValue;
  if (!directResults.empty()) {
    assert(directResults.size()
             == F.getLoweredFunctionType()->getNumDirectResults());
    returnValue = buildReturnValue(*this, TopLevel, directResults);
  }

  return { returnValue, *returnLoc };
}
示例#3
0
/// \brief Populate the body of the cloned closure, modifying instructions as
/// necessary. This is where we create the actual specialized BB Arguments.
void ClosureSpecCloner::populateCloned() {
  SILFunction *Cloned = getCloned();
  SILModule &M = Cloned->getModule();

  SILFunction *ClosureUser = CallSiteDesc.getApplyCallee();

  // Create arguments for the entry block.
  SILBasicBlock *ClosureUserEntryBB = &*ClosureUser->begin();
  SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);

  // Remove the closure argument.
  SILArgument *ClosureArg = nullptr;
  for (size_t i = 0, e = ClosureUserEntryBB->bbarg_size(); i != e; ++i) {
    SILArgument *Arg = ClosureUserEntryBB->getBBArg(i);
    if (i == CallSiteDesc.getClosureIndex()) {
      ClosureArg = Arg;
      continue;
    }

    // Otherwise, create a new argument which copies the original argument
    SILValue MappedValue =
      new (M) SILArgument(ClonedEntryBB, Arg->getType(), Arg->getDecl());

    ValueMap.insert(std::make_pair(Arg, MappedValue));
  }

  // Next we need to add in any arguments that are not captured as arguments to
  // the cloned function.
  //
  // We do not insert the new mapped arguments into the value map since there by
  // definition is nothing in the partial apply user function that references
  // such arguments. After this pass is done the only thing that will reference
  // the arguments is the partial apply that we will create.
  SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee();
  CanSILFunctionType ClosedOverFunTy = ClosedOverFun->getLoweredFunctionType();
  unsigned NumTotalParams = ClosedOverFunTy->getParameters().size();
  unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments();
  llvm::SmallVector<SILValue, 4> NewPAIArgs;
  for (auto &PInfo : ClosedOverFunTy->getParameters().slice(NumNotCaptured)) {
    SILValue MappedValue =
      new (M) SILArgument(ClonedEntryBB, PInfo.getSILType());
    NewPAIArgs.push_back(MappedValue);
  }

  SILBuilder &Builder = getBuilder();
  Builder.setInsertionPoint(ClonedEntryBB);

  // Clone FRI and PAI, and replace usage of the removed closure argument
  // with result of cloned PAI.
  SILValue FnVal =
      Builder.createFunctionRef(CallSiteDesc.getLoc(), ClosedOverFun);
  auto *NewClosure = CallSiteDesc.createNewClosure(Builder, FnVal, NewPAIArgs);
  ValueMap.insert(std::make_pair(ClosureArg, SILValue(NewClosure)));

  BBMap.insert(std::make_pair(ClosureUserEntryBB, ClonedEntryBB));
  // Recursively visit original BBs in depth-first preorder, starting with the
  // entry block, cloning all instructions other than terminators.
  visitSILBasicBlock(ClosureUserEntryBB);

  // Now iterate over the BBs and fix up the terminators.
  for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
    Builder.setInsertionPoint(BI->second);
    visit(BI->first->getTerminator());
  }

  // Then insert a release in all non failure exit BBs if our partial apply was
  // guaranteed. This is b/c it was passed at +0 originally and we need to
  // balance the initial increment of the newly created closure.
  if (CallSiteDesc.isClosureGuaranteed() &&
      CallSiteDesc.closureHasRefSemanticContext()) {
    for (SILBasicBlock *BB : CallSiteDesc.getNonFailureExitBBs()) {
      SILBasicBlock *OpBB = BBMap[BB];

      TermInst *TI = OpBB->getTerminator();
      auto Loc = CleanupLocation::get(NewClosure->getLoc());

      // If we have a return, we place the release right before it so we know
      // that it will be executed at the end of the epilogue.
      if (isa<ReturnInst>(TI)) {
        Builder.setInsertionPoint(TI);
        Builder.createReleaseValue(Loc, SILValue(NewClosure),
                                   Atomicity::Atomic);
        continue;
      }

      // We use casts where findAllNonFailureExitBBs should have made sure that
      // this is true. This will ensure that the code is updated when we hit the
      // cast failure in debug builds.
      auto *Unreachable = cast<UnreachableInst>(TI);
      auto PrevIter = std::prev(SILBasicBlock::iterator(Unreachable));
      auto NoReturnApply = FullApplySite::isa(&*PrevIter);

      // We insert the release value right before the no return apply so that if
      // the partial apply is passed into the no-return function as an @owned
      // value, we will retain the partial apply before we release it and
      // potentially eliminate it.
      Builder.setInsertionPoint(NoReturnApply.getInstruction());
      Builder.createReleaseValue(Loc, SILValue(NewClosure), Atomicity::Atomic);
    }
  }
}