int main(){ GpuMat img1, img2(imread("/home/lixiao/pgm/cv/130526cv/2.png",IMREAD_GRAYSCALE)); Mat rst=imread("/home/lixiao/pgm/cv/130526cv/1.png",IMREAD_GRAYSCALE); img1.upload(rst); SURF_GPU surf; GpuMat keypoints1GPU, keypoints2GPU; GpuMat descriptors1GPU, descriptors2GPU; surf(img1, GpuMat(), keypoints1GPU, descriptors1GPU); timeval start,finish; gettimeofday(&start,NULL); surf(img2, GpuMat(), keypoints2GPU, descriptors2GPU); gettimeofday(&finish,NULL); std::cout<<(1000000*(finish.tv_sec - start.tv_sec) + finish.tv_usec - start.tv_usec)<<std::endl; BFMatcher_GPU matcher(NORM_L2); GpuMat trainIdx, distance; gettimeofday(&start,NULL); matcher.matchSingle(descriptors1GPU, descriptors2GPU, trainIdx, distance); gettimeofday(&finish,NULL); std::cout<<(1000000*(finish.tv_sec - start.tv_sec) + finish.tv_usec - start.tv_usec)<<std::endl; vector<KeyPoint> keypoints1, keypoints2; vector<float> descriptors1, descriptors2; vector<DMatch> matches; gettimeofday(&start,NULL); surf.downloadKeypoints(keypoints1GPU, keypoints1); surf.downloadKeypoints(keypoints2GPU, keypoints2); surf.downloadDescriptors(descriptors1GPU, descriptors1); surf.downloadDescriptors(descriptors2GPU, descriptors2); BFMatcher_GPU::matchDownload(trainIdx, distance, matches); gettimeofday(&finish,NULL); std::cout<<(1000000*(finish.tv_sec - start.tv_sec) + finish.tv_usec - start.tv_usec)<<std::endl; // drawing the results Mat img_matches; drawMatches(Mat(img1), keypoints1, Mat(img2), keypoints2, matches, img_matches); imshow("hh",img_matches); waitKey(0); }
matches im_utility::diff(const std::string &im_file1, const std::string &im_file2, const parameters ¶ms, key_points *im1_kps, key_points *im2_kps) { using namespace cv; matches mt; std::vector<KeyPoint> im1_key_points, im2_key_points; std::vector<DMatch> matches; std::vector<DMatch> good_matches; double min_hessian = 400.0; if (params.find(key_hessian_threshold) != params.end()) min_hessian = params.at(key_hessian_threshold); double sigma = 2.0; if (params.find(key_match_threshold) != params.end()) sigma = params.at(key_match_threshold); int speedup = speedup_default; if (params.find(key_speedup) != params.end()) speedup = params.at(key_speedup); //auto info = getBuildInformation(); if (speedup == speedup_use_cuda) { using namespace gpu; DeviceInfo dev; auto name = dev.name(); GpuMat img1, img2; // upload data img1.upload(imread(im_file1, CV_LOAD_IMAGE_GRAYSCALE)); img2.upload(imread(im_file2, CV_LOAD_IMAGE_GRAYSCALE)); // detect keypoints & computing descriptors SURF_GPU surf; GpuMat kps_gpu1, kps_gpu2; GpuMat desc_gpu1, desc_gpu2; surf(img1, GpuMat(), kps_gpu1, desc_gpu1); surf(img2, GpuMat(), kps_gpu2, desc_gpu2); // matching descriptors BFMatcher_GPU matcher_gpu(NORM_L2); GpuMat trainIdx, distance; matcher_gpu.matchSingle(desc_gpu1, desc_gpu2, trainIdx, distance); // download results std::vector<float> desc1, desc2; surf.downloadKeypoints(kps_gpu1, im1_key_points); surf.downloadKeypoints(kps_gpu2, im2_key_points); surf.downloadDescriptors(desc_gpu1, desc1); surf.downloadDescriptors(desc_gpu2, desc2); BFMatcher_GPU::matchDownload(trainIdx, distance, matches); good_matches = matches; } else if (speedup == speedup_use_ocl) { using namespace ocl; DevicesInfo devs; getOpenCLDevices(devs, CVCL_DEVICE_TYPE_GPU); int dev = 0; if (params.find(key_ocl_dev) != params.end()) dev = params.at(key_ocl_dev); if (dev < 0 || dev >= devs.size()) dev = 0; setDevice(devs[dev]); SURF_OCL surf(800.0); BFMatcher_OCL matcher(NORM_L2); oclMat desc1, desc2; oclMat im1, im2; im1 = imread(im_file1, CV_LOAD_IMAGE_GRAYSCALE); im2 = imread(im_file2, CV_LOAD_IMAGE_GRAYSCALE); surf(im1, oclMat(), im1_key_points, desc1); surf(im2, oclMat(), im2_key_points, desc2); matcher.match(desc1, desc2, matches); double max_dist = 0; double min_dist = 100; for (int i = 0; i < desc1.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } for (int i = 0; i < desc1.rows; i++) { if (matches[i].distance <= max(sigma * min_dist, 0.02)) { good_matches.push_back(matches[i]); } } } else { auto get_file_desc = [](const std::string &filename, double min_hessian, std::vector<cv::KeyPoint> *out_key_points) { using namespace cv; Mat desc; Mat img = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); if (!img.data) return desc; SurfFeatureDetector detecter(min_hessian); std::vector<KeyPoint> key_points; detecter.detect(img, key_points); if (out_key_points) *out_key_points = key_points; if (key_points.empty()) { std::cout << "no feature detected: " << filename << std::endl; return desc; } SurfDescriptorExtractor extractor; extractor.compute(img, key_points, desc); return desc; }; auto im1_desc = get_file_desc(im_file1, min_hessian, &im1_key_points); auto im2_desc = get_file_desc(im_file2, min_hessian, &im2_key_points); FlannBasedMatcher matcher; matcher.match(im1_desc, im2_desc, matches); double max_dist = 0; double min_dist = 100; for (int i = 0; i < im1_desc.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } for (int i = 0; i < im1_desc.rows; i++) { if (matches[i].distance <= max(sigma * min_dist, 0.02)) { good_matches.push_back(matches[i]); } } } auto conv_keypoint = [](const std::vector<KeyPoint> &kps) { key_points out; std::transform(kps.begin(), kps.end(), std::back_inserter(out), [](const KeyPoint &kp){ //return key_point{ kp.pt.x, kp.pt.y, kp.size, kp.angle }; key_point p; p.x = kp.pt.x; p.y = kp.pt.y; p.size = kp.size; p.angle = kp.angle; return p; }); return out; }; auto kps1 = conv_keypoint(im1_key_points); auto kps2 = conv_keypoint(im2_key_points); if (im1_kps) *im1_kps = kps1; if (im2_kps) *im2_kps = kps2; std::transform(good_matches.begin(), good_matches.end(), std::back_inserter(mt), [&](const DMatch &m) { //return match{ kps1[m.queryIdx] , kps2[m.trainIdx] , m.distance }; match ma; ma.pt1 = kps1[m.queryIdx]; ma.pt2 = kps2[m.trainIdx]; ma.distance = m.distance; return ma; }); return mt; }
int main(int argc, char* argv[]) { if (argc != 5) { help(); return -1; } GpuMat img1, img2; for (int i = 1; i < argc; ++i) { if (string(argv[i]) == "--left") { img1.upload(imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE)); CV_Assert(!img1.empty()); } else if (string(argv[i]) == "--right") { img2.upload(imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE)); CV_Assert(!img2.empty()); } else if (string(argv[i]) == "--help") { help(); return -1; } } cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice()); SURF_GPU surf; // detecting keypoints & computing descriptors GpuMat keypoints1GPU, keypoints2GPU; GpuMat descriptors1GPU, descriptors2GPU; surf(img1, GpuMat(), keypoints1GPU, descriptors1GPU); surf(img2, GpuMat(), keypoints2GPU, descriptors2GPU); cout << "FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl; cout << "FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl; // matching descriptors BruteForceMatcher_GPU< L2<float> > matcher; GpuMat trainIdx, distance; matcher.matchSingle(descriptors1GPU, descriptors2GPU, trainIdx, distance); // downloading results vector<KeyPoint> keypoints1, keypoints2; vector<float> descriptors1, descriptors2; vector<DMatch> matches; surf.downloadKeypoints(keypoints1GPU, keypoints1); surf.downloadKeypoints(keypoints2GPU, keypoints2); surf.downloadDescriptors(descriptors1GPU, descriptors1); surf.downloadDescriptors(descriptors2GPU, descriptors2); BruteForceMatcher_GPU< L2<float> >::matchDownload(trainIdx, distance, matches); // drawing the results Mat img_matches; drawMatches(Mat(img1), keypoints1, Mat(img2), keypoints2, matches, img_matches); namedWindow("matches", 0); imshow("matches", img_matches); waitKey(0); return 0; }