double TwoStageDynamicBayesianNetwork::
GetYProbabilityGeneral( 
                    const Scope& Xscope,
                    const vector<Index>& X,
                    const Scope& Ascope,
                    const vector<Index>& A,
                    const Scope& YIIscope,
                    const vector<Index>& YII,
                    const Scope& Yscope,
                    const vector<Index>& Y
                    ) const
{

    double p = 1.0;
    for(Index Y_index=0; Y_index < Y.size(); Y_index++)
    {
        //Y_index is index in vector Y
        Index y = Yscope.at(Y_index); // the index to the variable we look at
        Index yVal = Y.at(Y_index); // the value of that variable 

        vector<Index> X_restr(GetXSoI_Y(y).size());
        IndexTools::RestrictIndividualIndicesToNarrowerScope(X, Xscope, GetXSoI_Y(y), X_restr );
        vector<Index> A_restr(GetASoI_Y(y).size());
        IndexTools::RestrictIndividualIndicesToNarrowerScope(A, Ascope, GetASoI_Y(y), A_restr );
        vector<Index> YII_restr(GetYSoI_Y(y).size());
        IndexTools::RestrictIndividualIndicesToNarrowerScope(YII, YIIscope, GetYSoI_Y(y), YII_restr );
        Index iiI = IndividualToJointYiiIndices(y, X_restr, A_restr, YII_restr);
        double p_y = _m_Y_CPDs[y]->Get(yVal, iiI);
        p *= p_y;
    }
    return(p);
}
示例#2
0
double FSAOHDist_NECOF::GetOHProb_relT(
        const Scope& agSc, 
        const std::vector<Index>& ohI)
    const
{
    double p = 1.0;
    for(Index i=0; i < agSc.size(); i++)
    {
        Index agI = agSc.at(i);
        Index ohI_agI = ohI.at(i);
        double p_this_agent = _m_oHistMarginals.at(agI).at(ohI_agI);
        p *= p_this_agent;
    }
    return p;
}
string MADPComponentFactoredStates::SoftPrintPartialState(
        const Scope& sfSc, 
        const std::vector<Index>& sfValues) const
{
    if(sfSc.size() != sfValues.size())
        throw E("MADPComponentFactoredStates::SoftPrintPartialState: sfSc.size() != sfValues.size()");

    stringstream ss;
    ss << "<";

    for(Index scI=0; scI < sfSc.size(); scI++)
    {
        Index sfI = sfSc.at(scI);
        Index sfValI = sfValues.at(scI);
        StateFactorDiscrete* sfac = _m_stateFactors.at(sfI);
        string name = sfac->GetName();
        string value = sfac->GetStateFactorValue(sfValI);
        if(scI > 0)
            ss << ",";
        ss << name << "=" << value;
    }
    ss << ">";
    return(ss.str());
}
示例#4
0
double FSAOHDist_NECOF::GetXOHProb_relT_SufficientSFscope(
        const Scope& sfSc, const std::vector<Index>& sfacIndices,
        const Scope& agSc, const std::vector<Index>& ohIndices
        ) const
{    
    double p = GetXProb(sfSc, sfacIndices);


    for(Index i=0; i < agSc.size(); i++)
    {
        Index agI=agSc.at(i);
        Index ohI=ohIndices.at(i);

        vector<Index> sfacIrestr(_m_sfacSoI.at(agI).size());
        try{
            IndexTools::RestrictIndividualIndicesToNarrowerScope(
                sfacIndices, sfSc, _m_sfacSoI.at(agI), sfacIrestr );
        }catch(ENoSubScope& e)
        {
            stringstream ss;
            ss <<"Error FSAOHDist_NECOF::GetXOHProb_relT should be called with all state factors on which the observation histories (of the agents in agSc) depend\n";
            ss <<"sfSc="<<sfSc<<", agSc="<<agSc<<endl;
            string s(ss.str());
            cerr << s;
            throw ENoSubScope(s);
        }
        Index x = IndexTools::IndividualToJointIndicesStepSize(sfacIrestr, 
                _m_stepsize.at(agI) );

        double p_i = _m_oHistConditional.at(agI)->Get(ohI, x);
        p *= p_i;
    }

    return p;

}
示例#5
0
void BGCG_SolverMaxPlus::Construct_JointType_Factors_CGBG(
        const boost::shared_ptr<const BayesianGameCollaborativeGraphical> &bgcg,
        const vector< vector<Index> >& var_indices,
        const vector< libDAI::Var >& vars,
        vector<libDAI::Factor>& facs,
        int verbosity)
{
    size_t nrLRFs = bgcg->GetNrLRFs();
    //compute nrFacs:
    size_t nrFacs =  0;
    for(Index e=0; e < nrLRFs; e++)
    {
        const BayesianGameIdenticalPayoff * bgip_e = bgcg->GetBGIPforLRF (e);
        size_t nrJT_e = bgip_e->GetNrJointTypes();
        if(verbosity >= 2)
            cout << "Edge "<<e<<" has " << nrJT_e << 
                " local joint types (i.e. factors)" <<endl;
        nrFacs += nrJT_e;
    }
    if(verbosity >= 1)
        cout << "FactorGraph has "<<nrFacs<<" factors"<<endl;
    facs.reserve(nrFacs);


    for(Index e=0; e < nrLRFs; e++)
    {
        //construct the factors for LRF component e.
        const BayesianGameIdenticalPayoff * bgip_e = bgcg->GetBGIPforLRF (e);
        Scope agentScope = bgcg->GetScope(e);

        const size_t nrJA_e =  bgip_e->GetNrJointActions();
        for(Index jtI_e=0; jtI_e < bgip_e->GetNrJointTypes(); jtI_e++)
        {
            vector<Index> indTypes_e =
                bgip_e->JointToIndividualTypeIndices(jtI_e);

            if(verbosity > 5)
                cout << "Adding factor for joint type jtI_e="<<jtI_e<<
                    " ( indtypes_e="<<SoftPrintVector(indTypes_e) << " )"<<endl;

            //compute the agent-type (i.e., factor) indices atI, get the
            //relevant variables and put them in a VarSet
            libDAI::VarSet vs;
            for(Index agI_e=0; agI_e < bgip_e->GetNrAgents(); agI_e++)
            {
                //translate agI_e to global agent index:
                Index agI = agentScope.at(agI_e);
                Index atI = var_indices[agI][indTypes_e[agI_e]];
                vs = vs | vars[atI];
                if(verbosity > 5)
                    cout << "agent "<<agI<<
                        " contributes through variable atI="<<atI<<endl;

            }
            libDAI::Real factor_vals[nrJA_e];
            for(Index jaI_e=0; jaI_e < nrJA_e; jaI_e++)
            {
                vector<Index> indAcs = 
                    bgip_e->JointToIndividualActionIndices(jaI_e);
                vector<size_t> indAcsST(indAcs.size());
                for(Index i=0; i<indAcs.size(); i++)  
                    indAcsST[i] = (size_t) indAcs[i];

                if(verbosity > 5)
                    cout << "Computing joint factor index (JFI) for vs="<<vs
                        <<", (action)indices="<< SoftPrintVector(indAcs) <<endl;
                Index jointFactorIndex = 
                    libDAI::Factor::IndividualToJointFactorIndex(vs, indAcsST);
                
                if(verbosity > 5)
                    cout << "JFI="<<jointFactorIndex<< " Utility "
                         << bgip_e->GetUtility(jtI_e, jaI_e) << " Prob "
                         << bgip_e->GetProbability(jtI_e) << endl;

                double perturbation=(1e-6*rand())/RAND_MAX;
                factor_vals[jointFactorIndex] =
                    (bgip_e->GetUtility(jtI_e, jaI_e) + perturbation) *
                    bgip_e->GetProbability(jtI_e);
            }

            libDAI::Factor f(vs, factor_vals);
            if(verbosity > 4)
            {
                cout << "Added factor f:"<< f << endl;
            }
            facs.push_back(f);
        }// <- end for jtI_e
    }// <- end for e
}
示例#6
0
double FSAOHDist_NECOF::GetXOHProb_relT(
        const Scope& sfSc, const std::vector<Index>& sfacIndices,
        const Scope& agSc, const std::vector<Index>& ohIndices
        ) const
{
    //we use a running example to illustrate the code:
    // ->we want to compute P(o1o2x1x2)
    //However, o1 additionally depends on x3 and o2 on x4

    //first check if sfSc contains all state factors that can influence
    //the observation (and thus the OHs) of the agents in agentSc, if
    //not, we will need to marginalize over the state factors that are not
    //in sfSc (but are in the SoI).
    
    Scope all_relevant_sfacIs(sfSc);
    for(Index i=0; i < agSc.size(); i++)
        all_relevant_sfacIs.Insert( _m_puf->GetFDPOMDPD()->
                                    Get2DBN()->GetYSoI_O( agSc[i] ) );

    Scope to_marginalize_over_sfacIs(all_relevant_sfacIs);
    to_marginalize_over_sfacIs.Remove(sfSc);

    //p(x1x2) = P(x1)*P(x2)
    double p1 = GetXProb(sfSc, sfacIndices);

    vector<Index> marg_vec(to_marginalize_over_sfacIs.size(), 0);
    vector<size_t> marg_nrSFvals( to_marginalize_over_sfacIs.size());
    IndexTools::RestrictIndividualIndicesToScope(
        _m_puf->GetFDPOMDPD()->GetNrValuesPerFactor(),
        to_marginalize_over_sfacIs,
        marg_nrSFvals);

    //this will hold P(o1o2|x1x2)
    double p_ohIndices_given_sfacIndices = 0.0;
    do {
        //the probability of this instantiation of marg_vec 
        //P(x3x4)
        double p2 = GetXProb(to_marginalize_over_sfacIs, marg_vec);

        if(p2>0) // optimalization: if p2 is zero the rest will be zero as well
        {
            //construct the 'full' state vector (i.e., containing all_relevant_sfacIs)
            //the vector x1x2x3x4
            vector<Index> all_relevant_vals(sfacIndices);
            all_relevant_vals.insert(all_relevant_vals.end(),
                                     marg_vec.begin(),
                                     marg_vec.end());
            
            //P(o1o2|x1x2x3x4)
            double p_ohIndices_given_all_relevant_vals = 1.0;
            for(Index i=0; i < agSc.size(); i++)
            {
                Index agI=agSc.at(i);
                Index ohI=ohIndices.at(i);

                vector<Index> sfacIrestr(_m_sfacSoI.at(agI).size());
                try{
                    IndexTools::RestrictIndividualIndicesToNarrowerScope(
                        all_relevant_vals,
                        all_relevant_sfacIs, 
                        _m_sfacSoI.at(agI),
                        sfacIrestr);
                }catch(ENoSubScope& e)
                { throw ENoSubScope("bah"); }

                Index x = IndexTools::IndividualToJointIndicesStepSize(
                    sfacIrestr, _m_stepsize.at(agI) );

                double p_OHi_given_all_relevant_vals = 
                    _m_oHistConditional.at(agI)->Get(ohI, x);
                //P(o1o2|x1x2x3x4) = P(o1|x1x2x3)P(o2|x1x2x4)
                p_ohIndices_given_all_relevant_vals *=
                    p_OHi_given_all_relevant_vals;
            }
            //P(o1o2x3x4|x1x2) = P(o1o2|x1x2x3x4)P(x3x4)
            double p_ohIndices_marg_vec_given_sfacIndices = 
                p2 * p_ohIndices_given_all_relevant_vals;
            //P(o1o2|x1x2) = sum_{x3x4} P(o1o2x3x4|x1x2) 
            p_ohIndices_given_sfacIndices += 
                p_ohIndices_marg_vec_given_sfacIndices;
        }
    }while (! IndexTools::Increment( marg_vec, marg_nrSFvals ) );

    //finally P(o1o2x1x2):
    double result = p1 * p_ohIndices_given_sfacIndices;
    return(result);
}