template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar eival_eps = (std::min)(test_precision<RealScalar>(), NumTraits<Scalar>::dummy_precision()*20000); SelfAdjointEigenSolver<MatrixType> eiSymm(m); VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiSymm.eigenvectors(), eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); VERIFY_IS_UNITARY(eiSymm.eigenvectors()); if(m.cols()<=4) { SelfAdjointEigenSolver<MatrixType> eiDirect; eiDirect.computeDirect(m); VERIFY_IS_EQUAL(eiDirect.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiDirect.eigenvalues()); if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) { std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n" << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" << "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << " (" << eival_eps << ")\n"; } VERIFY(eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps)); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiDirect.eigenvectors(), eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); VERIFY_IS_UNITARY(eiDirect.eigenvectors()); } }
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files: EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ Index rows = m.rows(); Index cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar largerEps = 10*test_precision<RealScalar>(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; MatrixType symmC = symmA; // randomly nullify some rows/columns { Index count = 1;//internal::random<Index>(-cols,cols); for(Index k=0; k<count; ++k) { Index i = internal::random<Index>(0,cols-1); symmA.row(i).setZero(); symmA.col(i).setZero(); } } symmA.template triangularView<StrictlyUpper>().setZero(); symmC.template triangularView<StrictlyUpper>().setZero(); MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; symmB.template triangularView<StrictlyUpper>().setZero(); SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); SelfAdjointEigenSolver<MatrixType> eiDirect; eiDirect.computeDirect(symmA); // generalized eigen pb GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB); VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); VERIFY_IS_EQUAL(eiDirect.info(), Success); VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox( eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); // generalized eigen problem Ax = lBx eiSymmGen.compute(symmC, symmB,Ax_lBx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem BAx = lx eiSymmGen.compute(symmC, symmB,BAx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); // generalized eigen problem ABx = lx eiSymmGen.compute(symmC, symmB,ABx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); eiSymm.compute(symmC); MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); eiSymmUninitialized.compute(symmA, false); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); // test Tridiagonalization's methods Tridiagonalization<MatrixType> tridiag(symmC); // FIXME tridiag.matrixQ().adjoint() does not work VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); if (rows > 1) { // Test matrix with NaN symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); } }