void CollisionPick::computeShapeInfoDimensionsOnly(const CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource) { ShapeType type = shapeInfo.getType(); glm::vec3 dimensions = pick.transform.getScale(); QString modelURL = (resource ? resource->getURL().toString() : ""); if (type == SHAPE_TYPE_COMPOUND) { shapeInfo.setParams(type, dimensions, modelURL); } else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) { shapeInfo.setParams(type, 0.5f * dimensions, modelURL); } else { shapeInfo.setParams(type, 0.5f * dimensions, modelURL); } }
void CollisionPick::computeShapeInfo(const CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource) { // This code was copied and modified from RenderableModelEntityItem::computeShapeInfo // TODO: Move to some shared code area (in entities-renderer? model-networking?) // after we verify this is working and do a diff comparison with RenderableModelEntityItem::computeShapeInfo // to consolidate the code. // We may also want to make computeShapeInfo always abstract away from the gpu model mesh, like it does here. const uint32_t TRIANGLE_STRIDE = 3; const uint32_t QUAD_STRIDE = 4; ShapeType type = shapeInfo.getType(); glm::vec3 dimensions = pick.transform.getScale(); if (type == SHAPE_TYPE_COMPOUND) { // should never fall in here when collision model not fully loaded // TODO: assert that all geometries exist and are loaded //assert(_model && _model->isLoaded() && _compoundShapeResource && _compoundShapeResource->isLoaded()); const HFMModel& collisionModel = resource->getHFMModel(); ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection(); pointCollection.clear(); uint32_t i = 0; // the way OBJ files get read, each section under a "g" line is its own meshPart. We only expect // to find one actual "mesh" (with one or more meshParts in it), but we loop over the meshes, just in case. foreach (const HFMMesh& mesh, collisionModel.meshes) { // each meshPart is a convex hull foreach (const HFMMeshPart &meshPart, mesh.parts) { pointCollection.push_back(QVector<glm::vec3>()); ShapeInfo::PointList& pointsInPart = pointCollection[i]; // run through all the triangles and (uniquely) add each point to the hull uint32_t numIndices = (uint32_t)meshPart.triangleIndices.size(); // TODO: assert rather than workaround after we start sanitizing HFMMesh higher up //assert(numIndices % TRIANGLE_STRIDE == 0); numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXSerializer for (uint32_t j = 0; j < numIndices; j += TRIANGLE_STRIDE) { glm::vec3 p0 = mesh.vertices[meshPart.triangleIndices[j]]; glm::vec3 p1 = mesh.vertices[meshPart.triangleIndices[j + 1]]; glm::vec3 p2 = mesh.vertices[meshPart.triangleIndices[j + 2]]; if (!pointsInPart.contains(p0)) { pointsInPart << p0; } if (!pointsInPart.contains(p1)) { pointsInPart << p1; } if (!pointsInPart.contains(p2)) { pointsInPart << p2; } } // run through all the quads and (uniquely) add each point to the hull numIndices = (uint32_t)meshPart.quadIndices.size(); // TODO: assert rather than workaround after we start sanitizing HFMMesh higher up //assert(numIndices % QUAD_STRIDE == 0); numIndices -= numIndices % QUAD_STRIDE; // WORKAROUND lack of sanity checking in FBXSerializer for (uint32_t j = 0; j < numIndices; j += QUAD_STRIDE) { glm::vec3 p0 = mesh.vertices[meshPart.quadIndices[j]]; glm::vec3 p1 = mesh.vertices[meshPart.quadIndices[j + 1]]; glm::vec3 p2 = mesh.vertices[meshPart.quadIndices[j + 2]]; glm::vec3 p3 = mesh.vertices[meshPart.quadIndices[j + 3]]; if (!pointsInPart.contains(p0)) { pointsInPart << p0; } if (!pointsInPart.contains(p1)) { pointsInPart << p1; } if (!pointsInPart.contains(p2)) { pointsInPart << p2; } if (!pointsInPart.contains(p3)) { pointsInPart << p3; } } if (pointsInPart.size() == 0) { qCDebug(scriptengine) << "Warning -- meshPart has no faces"; pointCollection.pop_back(); continue; } ++i; } } // We expect that the collision model will have the same units and will be displaced // from its origin in the same way the visual model is. The visual model has // been centered and probably scaled. We take the scaling and offset which were applied // to the visual model and apply them to the collision model (without regard for the // collision model's extents). glm::vec3 scaleToFit = dimensions / resource->getHFMModel().getUnscaledMeshExtents().size(); // multiply each point by scale for (int32_t i = 0; i < pointCollection.size(); i++) { for (int32_t j = 0; j < pointCollection[i].size(); j++) { // back compensate for registration so we can apply that offset to the shapeInfo later pointCollection[i][j] = scaleToFit * pointCollection[i][j]; } } shapeInfo.setParams(type, dimensions, resource->getURL().toString()); } else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
void RenderableModelEntityItem::computeShapeInfo(ShapeInfo& info) { ShapeType type = getShapeType(); if (type != SHAPE_TYPE_COMPOUND) { ModelEntityItem::computeShapeInfo(info); info.setParams(type, 0.5f * getDimensions()); } else { const QSharedPointer<NetworkGeometry> collisionNetworkGeometry = _model->getCollisionGeometry(); // should never fall in here when collision model not fully loaded // hence we assert collisionNetworkGeometry is not NULL assert(collisionNetworkGeometry); const FBXGeometry& collisionGeometry = collisionNetworkGeometry->getFBXGeometry(); const QSharedPointer<NetworkGeometry> renderNetworkGeometry = _model->getGeometry(); const FBXGeometry& renderGeometry = renderNetworkGeometry->getFBXGeometry(); _points.clear(); unsigned int i = 0; // the way OBJ files get read, each section under a "g" line is its own meshPart. We only expect // to find one actual "mesh" (with one or more meshParts in it), but we loop over the meshes, just in case. foreach (const FBXMesh& mesh, collisionGeometry.meshes) { // each meshPart is a convex hull foreach (const FBXMeshPart &meshPart, mesh.parts) { QVector<glm::vec3> pointsInPart; // run through all the triangles and (uniquely) add each point to the hull unsigned int triangleCount = meshPart.triangleIndices.size() / 3; for (unsigned int j = 0; j < triangleCount; j++) { unsigned int p0Index = meshPart.triangleIndices[j*3]; unsigned int p1Index = meshPart.triangleIndices[j*3+1]; unsigned int p2Index = meshPart.triangleIndices[j*3+2]; glm::vec3 p0 = mesh.vertices[p0Index]; glm::vec3 p1 = mesh.vertices[p1Index]; glm::vec3 p2 = mesh.vertices[p2Index]; if (!pointsInPart.contains(p0)) { pointsInPart << p0; } if (!pointsInPart.contains(p1)) { pointsInPart << p1; } if (!pointsInPart.contains(p2)) { pointsInPart << p2; } } // run through all the quads and (uniquely) add each point to the hull unsigned int quadCount = meshPart.quadIndices.size() / 4; assert((unsigned int)meshPart.quadIndices.size() == quadCount*4); for (unsigned int j = 0; j < quadCount; j++) { unsigned int p0Index = meshPart.quadIndices[j*4]; unsigned int p1Index = meshPart.quadIndices[j*4+1]; unsigned int p2Index = meshPart.quadIndices[j*4+2]; unsigned int p3Index = meshPart.quadIndices[j*4+3]; glm::vec3 p0 = mesh.vertices[p0Index]; glm::vec3 p1 = mesh.vertices[p1Index]; glm::vec3 p2 = mesh.vertices[p2Index]; glm::vec3 p3 = mesh.vertices[p3Index]; if (!pointsInPart.contains(p0)) { pointsInPart << p0; } if (!pointsInPart.contains(p1)) { pointsInPart << p1; } if (!pointsInPart.contains(p2)) { pointsInPart << p2; } if (!pointsInPart.contains(p3)) { pointsInPart << p3; } } if (pointsInPart.size() == 0) { qCDebug(entitiesrenderer) << "Warning -- meshPart has no faces"; continue; } // add next convex hull QVector<glm::vec3> newMeshPoints; _points << newMeshPoints; // add points to the new convex hull _points[i++] << pointsInPart; } } // We expect that the collision model will have the same units and will be displaced // from its origin in the same way the visual model is. The visual model has // been centered and probably scaled. We take the scaling and offset which were applied // to the visual model and apply them to the collision model (without regard for the // collision model's extents). glm::vec3 scale = getDimensions() / renderGeometry.getUnscaledMeshExtents().size(); // multiply each point by scale before handing the point-set off to the physics engine. // also determine the extents of the collision model. AABox box; for (int i = 0; i < _points.size(); i++) { for (int j = 0; j < _points[i].size(); j++) { // compensate for registraion _points[i][j] += _model->getOffset(); // scale so the collision points match the model points _points[i][j] *= scale; box += _points[i][j]; } } glm::vec3 collisionModelDimensions = box.getDimensions(); info.setParams(type, collisionModelDimensions, _compoundShapeURL); info.setConvexHulls(_points); } }