void testRunKsolve() { double simDt = 0.1; // double plotDt = 0.1; Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); Id kin = makeReacTest(); Id ksolve = s->doCreate( "Ksolve", kin, "ksolve", 1 ); Id stoich = s->doCreate( "Stoich", ksolve, "stoich", 1 ); Field< Id >::set( stoich, "compartment", kin ); Field< Id >::set( stoich, "ksolve", ksolve ); Field< string >::set( stoich, "path", "/kinetics/##" ); s->doUseClock( "/kinetics/ksolve", "process", 4 ); s->doSetClock( 4, simDt ); s->doReinit(); s->doStart( 20.0 ); Id plots( "/kinetics/plots" ); for ( unsigned int i = 0; i < 7; ++i ) { stringstream ss; ss << "plot." << i; SetGet2< string, string >::set( ObjId( plots, i ), "xplot", "tsr2.plot", ss.str() ); } s->doDelete( kin ); cout << "." << flush; }
void testReacVolumeScaling() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); Id comptId = shell->doCreate( "CubeMesh", Id(), "cube", 1 ); Id meshId( comptId.value() + 1 ); Id subId = shell->doCreate( "Pool", comptId, "sub", 1 ); Id prdId = shell->doCreate( "Pool", comptId, "prd", 1 ); Id reacId = shell->doCreate( "Reac", comptId, "reac", 1 ); double vol1 = 1e-15; ObjId mid = shell->doAddMsg( "OneToOne", subId, "requestVolume", meshId, "get_volume" ); assert( mid != ObjId() ); mid = shell->doAddMsg( "OneToOne", prdId, "requestVolume", meshId, "get_volume" ); assert( mid != ObjId() ); vector< double > coords( 9, 10.0e-6 ); coords[0] = coords[1] = coords[2] = 0; Field< vector< double > >::set( comptId, "coords", coords ); double volume = Field< double >::get( comptId, "volume" ); assert( doubleEq( volume, vol1 ) ); ObjId ret = shell->doAddMsg( "Single", reacId, "sub", subId, "reac" ); assert( ret != ObjId() ); ret = shell->doAddMsg( "Single", reacId, "prd", prdId, "reac" ); assert( ret != ObjId() ); Field< double >::set( reacId, "Kf", 2 ); Field< double >::set( reacId, "Kb", 3 ); double x = Field< double >::get( reacId, "kf" ); assert( doubleEq( x, 2 ) ); x = Field< double >::get( reacId, "kb" ); assert( doubleEq( x, 3 ) ); ret = shell->doAddMsg( "Single", reacId, "sub", subId, "reac" ); assert( ret != ObjId() ); double conv = 1.0 / ( NA * vol1 ); x = Field< double >::get( reacId, "kf" ); assert( doubleEq( x, 2 * conv ) ); x = Field< double >::get( reacId, "kb" ); assert( doubleEq( x, 3 ) ); ret = shell->doAddMsg( "Single", reacId, "sub", subId, "reac" ); assert( ret != ObjId() ); ret = shell->doAddMsg( "Single", reacId, "prd", prdId, "reac" ); assert( ret != ObjId() ); x = Field< double >::get( reacId, "kf" ); assert( doubleEq( x, 2 * conv * conv ) ); x = Field< double >::get( reacId, "kb" ); assert( doubleEq( x, 3 * conv ) ); shell->doDelete( comptId ); cout << "." << flush; }
void clear_testobjects(vector<Id>& container) { Shell * shell = reinterpret_cast< Shell* >( ObjId( Id(), 0 ).data() ); while (!container.empty()){ Id id = container.back(); shell->doDelete(id); container.pop_back(); } }
void testMMenzProcess() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); ////////////////////////////////////////////////////////////////////// // This set is the test kinetic calculation using MathFunc ////////////////////////////////////////////////////////////////////// Id nid = shell->doCreate( "Neutral", Id(), "n", 1 ); ////////////////////////////////////////////////////////////////////// // This set is the reference kinetic calculation using MMEnz ////////////////////////////////////////////////////////////////////// Id pid = shell->doCreate( "Pool", nid, "p", 1 ); // substrate Id qid = shell->doCreate( "Pool", nid, "q", 1 ); // enz mol Id rid = shell->doCreate( "Pool", nid, "r", 1 ); // product Id mmid = shell->doCreate( "MMenz", nid, "mm", 1 ); // mmenz Id tabid2 = shell->doCreate( "Table", nid, "tab2", 1 ); //output plot Field< double >::set( mmid, "Km", 1.0 ); Field< double >::set( mmid, "kcat", 1.0 ); Field< double >::set( pid, "nInit", 1.0 ); Field< double >::set( qid, "nInit", 1.0 ); Field< double >::set( rid, "nInit", 0.0 ); shell->doAddMsg( "Single", ObjId( mmid ), "sub", ObjId( pid ), "reac" ); shell->doAddMsg( "Single", ObjId( mmid ), "prd", ObjId( rid ), "reac" ); shell->doAddMsg( "Single", ObjId( qid ), "nOut", ObjId( mmid ), "enzDest" ); shell->doAddMsg( "Single", ObjId( pid ), "nOut", ObjId( tabid2 ), "input" ); shell->doSetClock( 0, 0.01 ); shell->doSetClock( 1, 0.01 ); shell->doUseClock( "/n/mm,/n/tab2", "process", 0 ); shell->doUseClock( "/n/#[ISA=Pool]", "process", 1 ); ////////////////////////////////////////////////////////////////////// // Now run models and compare outputs ////////////////////////////////////////////////////////////////////// shell->doReinit(); shell->doStart( 10 ); vector< double > vec = Field< vector< double > >::get( tabid2, "vec" ); assert( vec.size() == 1001 ); for ( unsigned int i = 0; i < vec.size(); ++i ) { double t = 0.01 * i; double et = estT( vec[i] ); assert( doubleApprox( t, et ) ); } shell->doDelete( nid ); cout << "." << flush; }
// Static func void Shell::cleanSimulation() { Eref sheller = Id().eref(); Shell* s = reinterpret_cast< Shell* >( sheller.data() ); vector< Id > kids; Neutral::children( sheller, kids ); for ( vector< Id >::iterator i = kids.begin(); i != kids.end(); ++i ) { if ( i->value() > 4 ) { cout << "Shell::cleanSimulation: deleted cruft at " << i->value() << ": " << i->path() << endl; s->doDelete( *i ); } } }
void testReadKkit() { ReadKkit rk; // rk.read( "test.g", "dend", 0 ); Id base = rk.read( "foo.g", "dend", Id() ); assert( base != Id() ); // Id kinetics = s->doFind( "/kinetics" ); Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); rk.run(); rk.dumpPlots( "dend.plot" ); s->doDelete( base ); cout << "." << flush; }
void testTaperingCylDiffn() { Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); double len = 25e-6; double r0 = 2e-6; double r1 = 1e-6; double diffLength = 1e-6; // 1e-6 is the highest dx for which error is OK double runtime = 10.0; double dt = 0.1; // 0.2 is the highest dt for which the error is in bounds double diffConst = 1.0e-12; // Should set explicitly, currently during creation of DiffPoolVec //double diffConst = 1.0e-12; Id model = s->doCreate( "Neutral", Id(), "model", 1 ); Id cyl = s->doCreate( "CylMesh", model, "cyl", 1 ); Field< double >::set( cyl, "r0", r0 ); Field< double >::set( cyl, "r1", r1 ); Field< double >::set( cyl, "x0", 0 ); Field< double >::set( cyl, "x1", len ); Field< double >::set( cyl, "diffLength", diffLength ); unsigned int ndc = Field< unsigned int >::get( cyl, "numMesh" ); assert( ndc == static_cast< unsigned int >( round( len / diffLength ))); Id pool = s->doCreate( "Pool", cyl, "pool", 1 ); Field< double >::set( pool, "diffConst", diffConst ); Id dsolve = s->doCreate( "Dsolve", model, "dsolve", 1 ); Field< Id >::set( dsolve, "compartment", cyl ); s->doUseClock( "/model/dsolve", "process", 1 ); s->doSetClock( 1, dt ); // Next: build by setting the path of the dsolve. Field< string >::set( dsolve, "path", "/model/cyl/pool" ); // Then find a way to test it. assert( pool.element()->numData() == ndc ); Field< double >::set( ObjId( pool, 0 ), "nInit", 1.0 ); s->doReinit(); s->doStart( runtime ); double myTot = 0.0; vector< double > poolVec; Field< double >::getVec( pool, "n", poolVec ); for ( unsigned int i = 0; i < poolVec.size(); ++i ) { myTot += poolVec[i]; } assert( doubleEq( myTot, 1.0 ) ); s->doDelete( model ); cout << "." << flush; }
void testPoolVolumeScaling() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); Id comptId = shell->doCreate( "CylMesh", Id(), "cyl", 1 ); Id meshId( comptId.value() + 1 ); Id poolId = shell->doCreate( "Pool", comptId, "pool", 1 ); ObjId mid = shell->doAddMsg( "OneToOne", ObjId( poolId, 0 ), "requestVolume", ObjId( meshId, 0 ), "get_volume" ); assert( mid != ObjId() ); vector< double > coords( 9, 0.0 ); double x1 = 100e-6; double r0 = 10e-6; double r1 = 5e-6; double lambda = x1; coords[3] = x1; coords[6] = r0; coords[7] = r1; coords[8] = lambda; Field< vector< double > >::set( comptId, "coords", coords ); double volume = Field< double >::get( poolId, "volume" ); assert( doubleEq( volume, PI * x1 * (r0+r1) * (r0+r1) / 4.0 ) ); Field< double >::set( poolId, "n", 400 ); double volscale = 1 / ( NA * volume ); double conc = Field< double >::get( poolId, "conc" ); assert( doubleEq( conc, 400 * volscale ) ); Field< double >::set( poolId, "conc", 500 * volscale ); double n = Field< double >::get( poolId, "n" ); assert( doubleEq( n, 500 ) ); Field< double >::set( poolId, "nInit", 650 ); double concInit = Field< double >::get( poolId, "concInit" ); assert( doubleEq( concInit, 650 * volscale ) ); Field< double >::set( poolId, "concInit", 10 * volscale ); n = Field< double >::get( poolId, "nInit" ); assert( doubleEq( n, 10 ) ); shell->doDelete( comptId ); cout << "." << flush; }
void testSetupReac() { Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); Id kin = makeReacTest(); s->doReinit(); s->doStart( 20.0 ); Id plots( "/kinetics/plots" ); /* for ( unsigned int i = 0; i < 7; ++i ) { stringstream ss; ss << "plot." << i; SetGet2< string, string >::set( ObjId( plots, i ), "xplot", "tsr.plot", ss.str() ); } */ s->doDelete( kin ); cout << "." << flush; }
void testMMenz() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); Id mmid = shell->doCreate( "MMenz", Id(), "mm", 1 ); // mmenz MMenz m; ProcInfo p; m.vSetKm( mmid.eref(), 5.0 ); m.vSetKcat( mmid.eref(), 4.0 ); m.vReinit( mmid.eref(), &p ); m.vSub( 2 ); m.vEnz( 3 ); assert( doubleEq( m.vGetKm( mmid.eref() ), 5.0 ) ); assert( doubleEq( m.vGetKcat( mmid.eref() ), 4.0 ) ); m.vProcess( mmid.eref(), &p ); shell->doDelete( mmid ); cout << "." << flush; }
void testRunGsolve() { double simDt = 0.1; // double plotDt = 0.1; Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); Id kin = makeReacTest(); double volume = 1e-21; Field< double >::set( kin, "volume", volume ); Field< double >::set( ObjId( "/kinetics/A" ), "concInit", 2 ); Field< double >::set( ObjId( "/kinetics/e1Pool" ), "concInit", 1 ); Field< double >::set( ObjId( "/kinetics/e2Pool" ), "concInit", 1 ); Id e1( "/kinetics/e1Pool/e1" ); Field< double >::set( e1, "Km", 5 ); Field< double >::set( e1, "kcat", 1 ); vector< double > stim( 100, 0.0 ); for ( unsigned int i = 0; i< 100; ++i ) { stim[i] = volume * NA * (1.0 + sin( i * 2.0 * PI / 100.0 ) ); } Field< vector< double > >::set( ObjId( "/kinetics/tab" ), "vector", stim ); Id gsolve = s->doCreate( "Gsolve", kin, "gsolve", 1 ); Id stoich = s->doCreate( "Stoich", gsolve, "stoich", 1 ); Field< Id >::set( stoich, "compartment", kin ); Field< Id >::set( stoich, "ksolve", gsolve ); Field< string >::set( stoich, "path", "/kinetics/##" ); s->doUseClock( "/kinetics/gsolve", "process", 4 ); s->doSetClock( 4, simDt ); s->doReinit(); s->doStart( 20.0 ); Id plots( "/kinetics/plots" ); for ( unsigned int i = 0; i < 7; ++i ) { stringstream ss; ss << "plot." << i; SetGet2< string, string >::set( ObjId( plots, i ), "xplot", "tsr3.plot", ss.str() ); } s->doDelete( kin ); cout << "." << flush; }
// See what Element::getNeighbors does with 2 sub <----> prd. void testTwoReacGetNeighbors() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); Id comptId = shell->doCreate( "CubeMesh", Id(), "cube", 1 ); Id meshId( comptId.value() + 1 ); Id subId = shell->doCreate( "Pool", comptId, "sub", 1 ); Id prdId = shell->doCreate( "Pool", comptId, "prd", 1 ); Id reacId = shell->doCreate( "Reac", comptId, "reac", 1 ); ObjId mid = shell->doAddMsg( "OneToOne", subId, "requestVolume", meshId, "get_volume" ); assert( mid != ObjId() ); mid = shell->doAddMsg( "OneToOne", prdId, "requestVolume", meshId, "get_volume" ); assert( mid != ObjId() ); ObjId ret = shell->doAddMsg( "Single", reacId, "sub", subId, "reac" ); assert( ret != ObjId() ); ret = shell->doAddMsg( "Single", reacId, "sub", subId, "reac" ); assert( ret != ObjId() ); ret = shell->doAddMsg( "Single", reacId, "prd", prdId, "reac" ); assert( ret != ObjId() ); vector< Id > pools; unsigned int num = reacId.element()->getNeighbors( pools, Reac::initCinfo()->findFinfo( "toSub" ) ); assert( num == 2 ); assert( pools[0] == subId ); assert( pools[1] == subId ); pools.clear(); num = reacId.element()->getNeighbors( pools, Reac::initCinfo()->findFinfo( "sub" ) ); assert( num == 2 ); assert( pools[0] == subId ); assert( pools[1] == subId ); shell->doDelete( comptId ); cout << "." << flush; }
void testCompartment() { unsigned int size = 1; Eref sheller( Id().eref() ); Shell* shell = reinterpret_cast< Shell* >( sheller.data() ); Id comptId = shell->doCreate("Compartment", Id(), "compt", size); assert( Id::isValid(comptId)); Eref compter = comptId.eref(); Compartment* c = reinterpret_cast< Compartment* >( comptId.eref().data() ); ProcInfo p; p.dt = 0.002; c->setInject( compter, 1.0 ); c->setRm( compter, 1.0 ); c->setRa( compter, 0.0025 ); c->setCm( compter, 1.0 ); c->setEm( compter, 0.0 ); c->setVm( compter, 0.0 ); // First, test charging curve for a single compartment // We want our charging curve to be a nice simple exponential // Vm = 1.0 - 1.0 * exp( - t / 1.0 ); double delta = 0.0; double Vm = 0.0; double tau = 1.0; double Vmax = 1.0; for ( p.currTime = 0.0; p.currTime < 2.0; p.currTime += p.dt ) { Vm = c->getVm( compter ); double x = Vmax - Vmax * exp( -p.currTime / tau ); delta += ( Vm - x ) * ( Vm - x ); c->process( compter, &p ); } assert( delta < 1.0e-6 ); shell->doDelete(comptId); cout << "." << flush; }
// Reported as a bug by Subha 22 Feb 2012. void testMsgElementListing() { Eref sheller = Id().eref(); Shell* shell = reinterpret_cast< Shell* >( sheller.data() ); unsigned int numData = 1; Id pa = shell->doCreate( "Neutral", Id(), "pa", numData ); numData = 5; /////////////////////////////////////////////////////////// // Set up the objects. /////////////////////////////////////////////////////////// Id a1 = shell->doCreate( "Arith", pa, "a1", numData ); Id a2 = shell->doCreate( "Arith", pa, "a2", numData ); Id b1 = shell->doCreate( "Arith", pa, "b1", numData ); Id b2 = shell->doCreate( "Arith", pa, "b2", numData ); Id c1 = shell->doCreate( "Arith", pa, "c1", numData ); Id c2 = shell->doCreate( "Arith", pa, "c2", numData ); Id d1 = shell->doCreate( "Arith", pa, "d1", numData ); Id d2 = shell->doCreate( "Arith", pa, "d2", numData ); Id e1 = shell->doCreate( "Arith", pa, "e1", numData ); Id e2 = shell->doCreate( "Arith", pa, "e2", numData ); /////////////////////////////////////////////////////////// // Set up messaging /////////////////////////////////////////////////////////// ObjId m1 = shell->doAddMsg( "Single", ObjId( a1, 3 ), "output", ObjId( a2, 1 ), "arg1" ); assert( !m1.bad() ); ObjId m2 = shell->doAddMsg( "OneToAll", ObjId( b1, 2 ), "output", ObjId( b2, 0 ), "arg1" ); assert( !m2.bad() ); ObjId m3 = shell->doAddMsg( "OneToOne", ObjId( c1, 0 ), "output", ObjId( c2, 0 ), "arg1" ); assert( !m3.bad() ); ObjId m4 = shell->doAddMsg( "Diagonal", ObjId( d1, 0 ), "output", ObjId( d2, 0 ), "arg1" ); assert( !m4.bad() ); ObjId m5 = shell->doAddMsg( "Sparse", ObjId( e1, 0 ), "output", ObjId( e2, 0 ), "arg1" ); assert( !m5.bad() ); /////////////////////////////////////////////////////////// // List messages /////////////////////////////////////////////////////////// Id manager( "/Msgs" ); assert( manager != Id() ); vector< Id > children = Field< vector< Id > >::get( manager, "children" ); assert( children.size() == 5 ); assert( children[0].element()->getName() == "singleMsg" ); assert( children[1].element()->getName() == "oneToOneMsg" ); assert( children[2].element()->getName() == "oneToAllMsg" ); assert( children[3].element()->getName() == "diagonalMsg" ); assert( children[4].element()->getName() == "sparseMsg" ); /* // A remarkably large number of some message classes, including 645 // OneToAll which are used by parent-child messages. I thought they // were cleaned out as the tests proceed. for ( unsigned int i = 0; i < children.size(); ++i ) { cout << "\nlocalEntries[" << i << "] = " << children[i].element()->dataHandler()->localEntries() << endl; } */ /* string path = children[0].path(); cout << "\nlocalEntries = " << children[0].element()->dataHandler()->localEntries() << endl; assert( path == "/Msgs/singleMsg[0]" ); */ assert( children[0].path() == "/Msgs[0]/singleMsg" ); assert( children[1].path() == "/Msgs[0]/oneToOneMsg" ); assert( children[2].path() == "/Msgs[0]/oneToAllMsg" ); assert( children[3].path() == "/Msgs[0]/diagonalMsg" ); assert( children[4].path() == "/Msgs[0]/sparseMsg" ); /////////////////////////////////////////////////////////// // Next: check that the child messages have the appropriate number // and indices of entries. /////////////////////////////////////////////////////////// shell->doDelete( pa ); cout << "." << flush; }
void testHSolveUtils( ) { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); bool success; Id n = shell->doCreate( "Neutral", Id(), "n" ); /** * First we test the functions which return the compartments linked to a * given compartment: adjacent(), and children(). * * A small tree is created for this: * * c0 * L c1 * L c2 * L c3 * L c4 * L c5 * * (c0 is the parent of c1. c1 is the parent of c2, c3, c4, c5.) */ Id c[ 6 ]; c[ 0 ] = shell->doCreate( "Compartment", n, "c0" ); c[ 1 ] = shell->doCreate( "Compartment", n, "c1" ); c[ 2 ] = shell->doCreate( "Compartment", n, "c2" ); c[ 3 ] = shell->doCreate( "Compartment", n, "c3" ); c[ 4 ] = shell->doCreate( "Compartment", n, "c4" ); c[ 5 ] = shell->doCreate( "Compartment", n, "c5" ); MsgId mid; mid = shell->doAddMsg( "Single", c[ 0 ], "axial", c[ 1 ], "raxial" ); ASSERT( mid != Msg::bad, "Linking compartments" ); mid = shell->doAddMsg( "Single", c[ 1 ], "axial", c[ 2 ], "raxial" ); ASSERT( mid != Msg::bad, "Linking compartments" ); mid = shell->doAddMsg( "Single", c[ 1 ], "axial", c[ 3 ], "raxial" ); ASSERT( mid != Msg::bad, "Linking compartments" ); mid = shell->doAddMsg( "Single", c[ 1 ], "axial", c[ 4 ], "raxial" ); ASSERT( mid != Msg::bad, "Linking compartments" ); mid = shell->doAddMsg( "Single", c[ 1 ], "axial", c[ 5 ], "raxial" ); ASSERT( mid != Msg::bad, "Linking compartments" ); vector< Id > found; unsigned int nFound; /* * Testing version 1 of HSolveUtils::adjacent. * It finds all neighbours of given compartment. */ // Neighbours of c0 nFound = HSolveUtils::adjacent( c[ 0 ], found ); ASSERT( nFound == found.size(), "Finding adjacent compartments" ); // c1 is adjacent ASSERT( nFound == 1, "Finding adjacent compartments" ); ASSERT( found[ 0 ] == c[ 1 ], "Finding adjacent compartments" ); // Neighbours of c1 found.clear(); nFound = HSolveUtils::adjacent( c[ 1 ], found ); ASSERT( nFound == 5, "Finding adjacent compartments" ); // c0 is adjacent success = find( found.begin(), found.end(), c[ 0 ] ) != found.end(); ASSERT( success, "Finding adjacent compartments" ); // c2 - c5 are adjacent for ( int i = 2; i < 6; i++ ) { success = find( found.begin(), found.end(), c[ i ] ) != found.end(); ASSERT( success, "Finding adjacent compartments" ); } // Neighbours of c2 found.clear(); nFound = HSolveUtils::adjacent( c[ 2 ], found ); // c1 is adjacent ASSERT( nFound == 1, "Finding adjacent compartments" ); ASSERT( found[ 0 ] == c[ 1 ], "Finding adjacent compartments" ); /* * Testing version 2 of HSolveUtils::adjacent. * It finds all but one neighbours of given compartment. * The the second argument to 'adjacent' is the one that is excluded. */ // Neighbours of c1 (excluding c0) found.clear(); nFound = HSolveUtils::adjacent( c[ 1 ], c[ 0 ], found ); ASSERT( nFound == 4, "Finding adjacent compartments" ); // c2 - c5 are adjacent for ( int i = 2; i < 6; i++ ) { success = find( found.begin(), found.end(), c[ i ] ) != found.end(); ASSERT( success, "Finding adjacent compartments" ); } // Neighbours of c1 (excluding c2) found.clear(); nFound = HSolveUtils::adjacent( c[ 1 ], c[ 2 ], found ); ASSERT( nFound == 4, "Finding adjacent compartments" ); // c0 is adjacent success = find( found.begin(), found.end(), c[ 0 ] ) != found.end(); ASSERT( success, "Finding adjacent compartments" ); // c3 - c5 are adjacent for ( int i = 3; i < 6; i++ ) { success = find( found.begin(), found.end(), c[ i ] ) != found.end(); ASSERT( success, "Finding adjacent compartments" ); } // Neighbours of c2 (excluding c1) found.clear(); nFound = HSolveUtils::adjacent( c[ 2 ], c[ 1 ], found ); // None adjacent, if c1 is excluded ASSERT( nFound == 0, "Finding adjacent compartments" ); // Neighbours of c2 (excluding c3) found.clear(); nFound = HSolveUtils::adjacent( c[ 2 ], c[ 3 ], found ); // c1 is adjacent, while c3 is not even connected ASSERT( nFound == 1, "Finding adjacent compartments" ); ASSERT( found[ 0 ] == c[ 1 ], "Finding adjacent compartments" ); /* * Testing HSolveUtils::children. * It finds all compartments which are dests for the "axial" message. */ // Children of c0 found.clear(); nFound = HSolveUtils::children( c[ 0 ], found ); ASSERT( nFound == 1, "Finding child compartments" ); // c1 is a child ASSERT( found[ 0 ] == c[ 1 ], "Finding child compartments" ); // Children of c1 found.clear(); nFound = HSolveUtils::children( c[ 1 ], found ); ASSERT( nFound == 4, "Finding child compartments" ); // c2 - c5 are c1's children for ( int i = 2; i < 6; i++ ) { success = find( found.begin(), found.end(), c[ i ] ) != found.end(); ASSERT( success, "Finding child compartments" ); } // Children of c2 found.clear(); nFound = HSolveUtils::children( c[ 2 ], found ); // c2 has no children ASSERT( nFound == 0, "Finding child compartments" ); // Clean up shell->doDelete( n ); cout << "." << flush; }
void testBuildStoich() { // Matrix looks like: // Reac Name R1 R2 e1a e1b e2 // MolName // D -1 0 0 0 0 // A -1 0 0 0 0 // B +1 -2 0 0 0 // C 0 +1 -1 0 0 // enz1 0 0 -1 +1 0 // e1cplx 0 0 +1 -1 0 // E 0 0 0 +1 -1 // F 0 0 0 0 +1 // enz2 0 0 0 0 0 // tot1 0 0 0 0 0 // // This has been shuffled to: // A -1 0 0 0 0 // B +1 -2 0 0 0 // C 0 +1 -1 0 0 // E 0 0 0 +1 -1 // F 0 0 0 0 +1 // enz1 0 0 -1 +1 0 // enz2 0 0 0 0 0 // e1cplx 0 0 +1 -1 0 // D -1 0 0 0 0 // tot1 0 0 0 0 0 // // But the reacs have also been reordered: // Reac Name e1a e1b e2 R1 R2 // A 0 0 0 -1 0 // B 0 0 0 1 -2 // C -1 0 0 0 1 // E 0 1 -1 0 0 // F 0 0 1 0 0 // enz1 -1 1 0 0 0 // enz2 0 0 0 0 0 // e1cplx 1 -1 0 0 0 // D 0 0 0 -1 0 // tot1 0 0 0 0 0 // // (This is the output of the print command on the sparse matrix.) // Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); Id kin = makeReacTest(); Id ksolve = s->doCreate( "Ksolve", kin, "ksolve", 1 ); Id stoich = s->doCreate( "Stoich", ksolve, "stoich", 1 ); Field< Id >::set( stoich, "compartment", kin ); Field< Id >::set( stoich, "ksolve", ksolve ); // Used to get at the stoich matrix from gdb. // Stoich* stoichPtr = reinterpret_cast< Stoich* >( stoich.eref().data() ); Field< string >::set( stoich, "path", "/kinetics/##" ); unsigned int n = Field< unsigned int >::get( stoich, "numAllPools" ); assert( n == 10 ); unsigned int r = Field< unsigned int >::get( stoich, "numRates" ); assert( r == 5 ); // One each for reacs and MMenz, two for Enz. vector< int > entries = Field< vector< int > >::get( stoich, "matrixEntry" ); vector< unsigned int > colIndex = Field< vector< unsigned int > >::get( stoich, "columnIndex" ); vector< unsigned int > rowStart = Field< vector< unsigned int > >::get( stoich, "rowStart" ); assert( rowStart.size() == n + 1 ); assert( entries.size() == colIndex.size() ); assert( entries.size() == 13 ); assert( entries[0] == -1 ); assert( entries[1] == 1 ); assert( entries[2] == -2 ); assert( entries[3] == -1 ); assert( entries[4] == 1 ); assert( entries[5] == 1 ); assert( entries[6] == -1 ); assert( entries[7] == 1 ); assert( entries[8] == -1 ); assert( entries[9] == 1 ); assert( entries[10] == 1 ); assert( entries[11] == -1 ); assert( entries[12] == -1 ); s->doDelete( kin ); cout << "." << flush; }
void testAssortedMsg() { Eref sheller = Id().eref(); Shell* shell = reinterpret_cast< Shell* >( sheller.data() ); ObjId pa = shell->doCreate( "Neutral", ObjId(), "pa", 1 ); unsigned int numData = 5; /////////////////////////////////////////////////////////// // Set up the objects. /////////////////////////////////////////////////////////// Id a1 = shell->doCreate( "Arith", pa, "a1", numData ); Id a2 = shell->doCreate( "Arith", pa, "a2", numData ); Id b1 = shell->doCreate( "Arith", pa, "b1", numData ); Id b2 = shell->doCreate( "Arith", pa, "b2", numData ); Id c1 = shell->doCreate( "Arith", pa, "c1", numData ); Id c2 = shell->doCreate( "Arith", pa, "c2", numData ); Id d1 = shell->doCreate( "Arith", pa, "d1", numData ); Id d2 = shell->doCreate( "Arith", pa, "d2", numData ); Id e1 = shell->doCreate( "Arith", pa, "e1", numData ); Id e2 = shell->doCreate( "Arith", pa, "e2", numData ); /////////////////////////////////////////////////////////// // Set up initial conditions /////////////////////////////////////////////////////////// bool ret = 0; vector< double > init; // 12345 for ( unsigned int i = 1; i < 6; ++i ) init.push_back( i ); ret = SetGet1< double >::setVec( a1, "arg1", init ); // 12345 assert( ret ); ret = SetGet1< double >::setVec( b1, "arg1", init ); // 12345 assert( ret ); ret = SetGet1< double >::setVec( c1, "arg1", init ); // 12345 assert( ret ); ret = SetGet1< double >::setVec( d1, "arg1", init ); // 12345 assert( ret ); ret = SetGet1< double >::setVec( e1, "arg1", init ); // 12345 assert( ret ); /////////////////////////////////////////////////////////// // Set up messaging /////////////////////////////////////////////////////////// // Should give 04000 ObjId m1 = shell->doAddMsg( "Single", ObjId( a1, 3 ), "output", ObjId( a2, 1 ), "arg1" ); assert( !m1.bad() ); // Should give 33333 ObjId m2 = shell->doAddMsg( "OneToAll", ObjId( b1, 2 ), "output", ObjId( b2, 0 ), "arg1" ); assert( !m2.bad() ); // Should give 12345 ObjId m3 = shell->doAddMsg( "OneToOne", ObjId( c1, 0 ), "output", ObjId( c2, 0 ), "arg1" ); assert( !m3.bad() ); // Should give 01234 ObjId m4 = shell->doAddMsg( "Diagonal", ObjId( d1, 0 ), "output", ObjId( d2, 0 ), "arg1" ); assert( !m4.bad() ); // Should give 54321 ObjId m5 = shell->doAddMsg( "Sparse", ObjId( e1, 0 ), "output", ObjId( e2, 0 ), "arg1" ); assert( !m5.bad() ); ret = SetGet3< unsigned int, unsigned int, unsigned int >::set( m5, "setEntry", 0, 4, 0 ); assert( ret ); ret = SetGet3< unsigned int, unsigned int, unsigned int >::set( m5, "setEntry", 1, 3, 0 ); assert( ret ); ret = SetGet3< unsigned int, unsigned int, unsigned int >::set( m5, "setEntry", 2, 2, 0 ); assert( ret ); ret = SetGet3< unsigned int, unsigned int, unsigned int >::set( m5, "setEntry", 3, 1, 0 ); assert( ret ); ret = SetGet3< unsigned int, unsigned int, unsigned int >::set( m5, "setEntry", 4, 0, 0 ); assert( ret ); assert( ret ); /////////////////////////////////////////////////////////// // Test traversal /////////////////////////////////////////////////////////// // Single ObjId f = Msg::getMsg( m1 )->findOtherEnd( ObjId( a1, 3 ) ); assert( f == ObjId( a2, 1 ) ); f = Msg::getMsg( m1 )->findOtherEnd( ObjId( a2, 1 ) ); assert( f == ObjId( a1, 3 ) ); f = Msg::getMsg( m1 )->findOtherEnd( ObjId( a1, 0 ) ); assert( f.bad() ); f = Msg::getMsg( m1 )->findOtherEnd( ObjId( a2, 0 ) ); assert( f.bad() ); f = Msg::getMsg( m1 )->findOtherEnd( ObjId( b2, 1 ) ); assert( f.bad() ); // OneToAll f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b1, 2 ) ); assert( f == ObjId( b2, 0 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b2, 0 ) ); assert( f == ObjId( b1, 2 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b2, 1 ) ); assert( f == ObjId( b1, 2 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b2, 2 ) ); assert( f == ObjId( b1, 2 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b2, 3 ) ); assert( f == ObjId( b1, 2 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b2, 4 ) ); assert( f == ObjId( b1, 2 ) ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( b1, 0 ) ); assert( f.bad() ); f = Msg::getMsg( m2 )->findOtherEnd( ObjId( a2, 1 ) ); assert( f.bad() ); // OneToOne for ( unsigned int i = 0; i < 5; ++i ) { f = Msg::getMsg( m3 )->findOtherEnd( ObjId( c1, i ) ); assert( f == ObjId( c2, i ) ); f = Msg::getMsg( m3 )->findOtherEnd( ObjId( c2, i ) ); assert( f == ObjId( c1, i ) ); } f = Msg::getMsg( m3 )->findOtherEnd( ObjId( a2, 1 ) ); assert( f.bad() ); // Diagonal for ( unsigned int i = 0; i < 4; ++i ) { f = Msg::getMsg( m4 )->findOtherEnd( ObjId( d1, i ) ); assert( f == ObjId( d2, i + 1 ) ); f = Msg::getMsg( m4 )->findOtherEnd( ObjId( d2, i + 1 ) ); assert( f == ObjId( d1, i ) ); } f = Msg::getMsg( m4 )->findOtherEnd( ObjId( d1, 4 ) ); assert( f.bad() ); f = Msg::getMsg( m4 )->findOtherEnd( ObjId( d2, 0 ) ); assert( f.bad() ); f = Msg::getMsg( m4 )->findOtherEnd( ObjId( a2, 1 ) ); assert( f.bad() ); // Sparse for ( unsigned int i = 0; i < 5; ++i ) { f = Msg::getMsg( m5 )->findOtherEnd( ObjId( e1, i ) ); assert( f == ObjId( e2, 4 - i ) ); f = Msg::getMsg( m5 )->findOtherEnd( ObjId( e2, i ) ); assert( f == ObjId( e1, 4 - i ) ); } f = Msg::getMsg( m5 )->findOtherEnd( ObjId( a2, 1 ) ); assert( f.bad() ); cout << "." << flush; /////////////////////////////////////////////////////////// // Check lookup by funcId. /////////////////////////////////////////////////////////// const Finfo* aFinfo = Arith::initCinfo()->findFinfo( "arg1" ); FuncId afid = dynamic_cast< const DestFinfo* >( aFinfo )->getFid(); ObjId m = a2.element()->findCaller( afid ); assert ( m == m1 ); m = b2.element()->findCaller( afid ); assert ( m == m2 ); m = c2.element()->findCaller( afid ); assert ( m == m3 ); m = d2.element()->findCaller( afid ); assert ( m == m4 ); m = e2.element()->findCaller( afid ); assert ( m == m5 ); /////////////////////////////////////////////////////////// // Clean up. /////////////////////////////////////////////////////////// shell->doDelete( pa ); cout << "." << flush; }
void testCalcJunction() { Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); // Make a neuron with same-size dend and spine. PSD is tiny. // Put a, b, c in dend, b, c, d in spine, c, d, f in psd. No reacs. // See settling of all concs by diffusion, pairwise. Id model = s->doCreate( "Neutral", Id(), "model", 1 ); Id dend = s->doCreate( "Compartment", model, "dend", 1 ); Id neck = s->doCreate( "Compartment", model, "spine_neck", 1 ); Id head = s->doCreate( "Compartment", model, "spine_head", 1 ); Field< double >::set( dend, "x", 10e-6 ); Field< double >::set( dend, "diameter", 2e-6 ); Field< double >::set( dend, "length", 10e-6 ); Field< double >::set( neck, "x0", 9e-6 ); Field< double >::set( neck, "x", 9e-6 ); Field< double >::set( neck, "y", 1e-6 ); Field< double >::set( neck, "diameter", 0.5e-6 ); Field< double >::set( neck, "length", 1.0e-6 ); Field< double >::set( head, "x0", 9e-6 ); Field< double >::set( head, "x", 9e-6 ); Field< double >::set( head, "y0", 1e-6 ); Field< double >::set( head, "y", 11e-6 ); Field< double >::set( head, "diameter", 2e-6 ); Field< double >::set( head, "length", 10e-6 ); s->doAddMsg( "Single", ObjId( dend ), "raxial", ObjId( neck ), "axial"); s->doAddMsg( "Single", ObjId( neck ), "raxial", ObjId( head ), "axial"); Id nm = s->doCreate( "NeuroMesh", model, "nm", 1 ); Field< double >::set( nm, "diffLength", 10e-6 ); Field< bool >::set( nm, "separateSpines", true ); Id sm = s->doCreate( "SpineMesh", model, "sm", 1 ); Id pm = s->doCreate( "PsdMesh", model, "pm", 1 ); ObjId mid = s->doAddMsg( "Single", ObjId( nm ), "spineListOut", ObjId( sm ), "spineList" ); assert( !mid.bad() ); mid = s->doAddMsg( "Single", ObjId( nm ), "psdListOut", ObjId( pm ), "psdList" ); Field< Id >::set( nm, "cell", model ); vector< Id > pools( 9 ); static string names[] = {"a", "b", "c", "b", "c", "d", "c", "d", "e" }; static Id parents[] = {nm, nm, nm, sm, sm, sm, pm, pm, pm}; for ( unsigned int i = 0; i < 9; ++i ) { pools[i] = s->doCreate( "Pool", parents[i], names[i], 1 ); assert( pools[i] != Id() ); Field< double >::set( pools[i], "concInit", 1.0 + 1.0 * i ); Field< double >::set( pools[i], "diffConst", 1e-11 ); if ( i < 6 ) { double vol = Field< double >::get( pools[i], "volume" ); assert( doubleEq( vol, 10e-6 * 1e-12 * PI ) ); } } Id dendsolve = s->doCreate( "Dsolve", model, "dendsolve", 1 ); Id spinesolve = s->doCreate( "Dsolve", model, "spinesolve", 1 ); Id psdsolve = s->doCreate( "Dsolve", model, "psdsolve", 1 ); Field< Id >::set( dendsolve, "compartment", nm ); Field< Id >::set( spinesolve, "compartment", sm ); Field< Id >::set( psdsolve, "compartment", pm ); Field< string >::set( dendsolve, "path", "/model/nm/#" ); Field< string >::set( spinesolve, "path", "/model/sm/#" ); Field< string >::set( psdsolve, "path", "/model/pm/#" ); assert( Field< unsigned int >::get( dendsolve, "numAllVoxels" ) == 1 ); assert( Field< unsigned int >::get( spinesolve, "numAllVoxels" ) == 1 ); assert( Field< unsigned int >::get( psdsolve, "numAllVoxels" ) == 1 ); assert( Field< unsigned int >::get( dendsolve, "numPools" ) == 3 ); assert( Field< unsigned int >::get( spinesolve, "numPools" ) == 3 ); assert( Field< unsigned int >::get( psdsolve, "numPools" ) == 3 ); SetGet2< Id, Id >::set( dendsolve, "buildNeuroMeshJunctions", spinesolve, psdsolve ); s->doSetClock( 0, 0.01 ); s->doUseClock( "/model/#solve", "process", 0 ); s->doReinit(); s->doStart( 100 ); for ( unsigned int i = 0; i < 9; ++i ) { double c = Field< double >::get( pools[i], "conc" ); double n = Field< double >::get( pools[i], "n" ); double v = Field< double >::get( pools[i], "volume" ); cout << pools[i].path() << ": " << c << ", " << n << ", " << n / v << ", " << v << endl; } s->doDelete( model ); cout << "." << flush; }
void testCylDiffnWithStoich() { Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); double len = 25e-6; double r0 = 1e-6; double r1 = 1e-6; double diffLength = 1e-6; // 1e-6 is the highest dx for which error is OK double runtime = 10.0; double dt0 = 0.1; // Used for diffusion. 0.2 is the highest dt for which the error is in bounds double dt1 = 1; // Used for chem. double diffConst = 1.0e-12; Id model = s->doCreate( "Neutral", Id(), "model", 1 ); Id cyl = s->doCreate( "CylMesh", model, "cyl", 1 ); Field< double >::set( cyl, "r0", r0 ); Field< double >::set( cyl, "r1", r1 ); Field< double >::set( cyl, "x0", 0 ); Field< double >::set( cyl, "x1", len ); Field< double >::set( cyl, "diffLength", diffLength ); unsigned int ndc = Field< unsigned int >::get( cyl, "numMesh" ); assert( ndc == static_cast< unsigned int >( round( len / diffLength ))); Id pool1 = s->doCreate( "Pool", cyl, "pool1", 1 ); Id pool2 = s->doCreate( "Pool", cyl, "pool2", 1 ); Field< double >::set( pool1, "diffConst", diffConst ); Field< double >::set( pool2, "diffConst", diffConst/2 ); Id stoich = s->doCreate( "Stoich", model, "stoich", 1 ); Id ksolve = s->doCreate( "Ksolve", model, "ksolve", 1 ); Id dsolve = s->doCreate( "Dsolve", model, "dsolve", 1 ); Field< Id >::set( stoich, "compartment", cyl ); Field< Id >::set( stoich, "ksolve", ksolve ); Field< Id >::set( stoich, "dsolve", dsolve ); Field< string >::set( stoich, "path", "/model/cyl/#" ); assert( pool1.element()->numData() == ndc ); // Then find a way to test it. vector< double > poolVec; Field< double >::set( ObjId( pool1, 0 ), "nInit", 1.0 ); Field< double >::set( ObjId( pool2, 0 ), "nInit", 1.0 ); Field< double >::getVec( pool1, "nInit", poolVec ); assert( poolVec.size() == ndc ); assert( doubleEq( poolVec[0], 1.0 ) ); assert( doubleEq( poolVec[1], 0.0 ) ); vector< double > nvec = LookupField< unsigned int, vector< double > >::get( dsolve, "nVec", 0); assert( nvec.size() == ndc ); // Next: build by doing reinit s->doUseClock( "/model/dsolve", "process", 0 ); s->doUseClock( "/model/ksolve", "process", 1 ); s->doSetClock( 0, dt0 ); s->doSetClock( 1, dt1 ); s->doReinit(); s->doStart( runtime ); nvec = LookupField< unsigned int, vector< double > >::get( dsolve, "nVec", 0); Field< double >::getVec( pool1, "n", poolVec ); assert( nvec.size() == poolVec.size() ); for ( unsigned int i = 0; i < nvec.size(); ++i ) assert( doubleEq( nvec[i], poolVec[i] ) ); /* cout << endl; for ( unsigned int i = 0; i < nvec.size(); ++i ) cout << nvec[i] << " "; cout << endl; */ double dx = diffLength; double err = 0.0; double analyticTot = 0.0; double myTot = 0.0; for ( unsigned int i = 0; i < nvec.size(); ++i ) { double x = i * dx + dx * 0.5; // This part is the solution as a func of x,t. double y = dx * // This part represents the init n of 1 in dx ( 1.0 / sqrt( PI * diffConst * runtime ) ) * exp( -x * x / ( 4 * diffConst * runtime ) ); err += ( y - nvec[i] ) * ( y - nvec[i] ); //cout << i << " " << x << " " << y << " " << conc[i] << endl; analyticTot += y; myTot += nvec[i]; } assert( doubleEq( myTot, 1.0 ) ); // cout << "analyticTot= " << analyticTot << ", myTot= " << myTot << endl; assert( err < 1.0e-5 ); s->doDelete( model ); cout << "." << flush; }
void testCellDiffn() { Id makeCompt( Id parentCompt, Id parentObj, string name, double len, double dia, double theta ); Shell* s = reinterpret_cast< Shell* >( Id().eref().data() ); double len = 40e-6; double dia = 10e-6; double diffLength = 1e-6; double dt = 1.0e-1; double runtime = 100.0; double diffConst = 1.0e-12; Id model = s->doCreate( "Neutral", Id(), "model", 1 ); Id soma = makeCompt( Id(), model, "soma", dia, dia, 90 ); Id dend = makeCompt( soma, model, "dend", len, 3e-6, 0 ); Id branch1 = makeCompt( dend, model, "branch1", len, 2e-6, 45.0 ); Id branch2 = makeCompt( dend, model, "branch2", len, 2e-6, -45.0 ); Id twig1 = makeCompt( branch1, model, "twig1", len, 1.5e-6, 90.0 ); Id twig2 = makeCompt( branch1, model, "twig2", len, 1.5e-6, 0.0 ); Id nm = s->doCreate( "NeuroMesh", model, "neuromesh", 1 ); Field< double >::set( nm, "diffLength", diffLength ); Field< string >::set( nm, "geometryPolicy", "cylinder" ); Field< Id >::set( nm, "cell", model ); unsigned int ns = Field< unsigned int >::get( nm, "numSegments" ); assert( ns == 6 ); unsigned int ndc = Field< unsigned int >::get( nm, "numDiffCompts" ); assert( ndc == 210 ); Id pool1 = s->doCreate( "Pool", nm, "pool1", 1 ); Field< double >::set( pool1, "diffConst", diffConst ); Id pool2 = s->doCreate( "Pool", nm, "pool2", 1 ); Field< double >::set( pool2, "diffConst", diffConst ); Id dsolve = s->doCreate( "Dsolve", model, "dsolve", 1 ); Field< Id >::set( dsolve, "compartment", nm ); s->doUseClock( "/model/dsolve", "process", 1 ); s->doSetClock( 1, dt ); // Next: build by setting path Field< string >::set( dsolve, "path", "/model/neuromesh/pool#" ); vector< double > nvec = LookupField< unsigned int, vector< double > >::get( dsolve, "nVec", 0); assert( nvec.size() == ndc ); assert( pool1.element()->numData() == ndc ); Field< double >::set( ObjId( pool1, 0 ), "nInit", 1.0 ); Field< double >::set( ObjId( pool2, ndc - 1 ), "nInit", 2.0 ); s->doReinit(); s->doStart( runtime ); nvec = LookupField< unsigned int, vector< double > >::get( dsolve, "nVec", 0); vector< double > pool1Vec; Field< double >::getVec( pool1, "n", pool1Vec ); assert( pool1Vec.size() == ndc ); vector< double > pool2Vec; Field< double >::getVec( pool2, "n", pool2Vec ); assert( pool2Vec.size() == ndc ); double myTot1 = 0; double myTot2 = 0; for ( unsigned int i = 0; i < nvec.size(); ++i ) { assert( doubleEq( pool1Vec[i], nvec[i] ) ); myTot1 += nvec[i]; myTot2 += pool2Vec[i]; } assert( doubleEq( myTot1, 1.0 ) ); assert( doubleEq( myTot2, 2.0 ) ); /* cout << endl; cout << "Big cell: " << endl; for ( unsigned int i = 0; i < nvec.size(); ++i ) cout << nvec[i] << ", " << pool2Vec[i] << endl; cout << endl; */ s->doDelete( model ); cout << "." << flush; }
/** * In all cases we set up the same amount of data transfer by the msgs, that * is, equivalent to a fully recurrently connected network. * Used in regressionTests/benchmarkTests.cpp */ void benchmarkMsg( unsigned int n, string msgType ) { Eref sheller = Id().eref(); Shell* shell = reinterpret_cast< Shell* >( sheller.data() ); vector< double > init( n ); for ( unsigned int i = 0; i < n; ++i ) init[i] = (i + 1) * 1e6; Id a1 = shell->doCreate( "Arith", Id(), "a1", n ); if ( msgType == "Single" ) { for ( unsigned int i = 0; i < n; ++i ) { for ( unsigned int j = 0; j < n; ++j ) { ObjId m1 = shell->doAddMsg( "Single", ObjId( a1, i ), "output", ObjId( a1, j ), "arg3" ); assert( !m1.bad() ); } } } else if ( msgType == "OneToAll" ) { for ( unsigned int i = 0; i < n; ++i ) { ObjId m1 = shell->doAddMsg( "OneToAll", ObjId( a1, i ), "output", ObjId( a1, 0 ), "arg3" ); assert( !m1.bad() ); } } else if ( msgType == "OneToOne" ) { for ( unsigned int i = 0; i < n; ++i ) { // just repeat it n times ObjId m1 = shell->doAddMsg( "OneToOne", ObjId( a1, 0 ), "output", ObjId( a1, 0 ), "arg3" ); assert( !m1.bad() ); } } else if ( msgType == "Diagonal" ) { for ( unsigned int i = 0; i < 2 * n; ++i ) { // Set up all offsets ObjId m1 = shell->doAddMsg( "Diagonal", ObjId( a1, 0 ), "output", ObjId( a1, 0 ), "arg3" ); Field< int >::set( m1, "stride", n - i ); } } else if ( msgType == "Sparse" ) { ObjId m1 = shell->doAddMsg( "Sparse", ObjId( a1, 0 ), "output", ObjId( a1, 0 ), "arg3" ); SetGet2< double, long >::set( m1, "setRandomConnectivity", 1.0, 1234 ); } shell->doUseClock( "/a1", "proc", 0 ); for ( unsigned int i = 0; i < 10; ++i ) shell->doSetClock( i, 0 ); shell->doSetClock( 0, 1 ); shell->doReinit(); SetGet1< double >::setVec( a1, "arg1", init ); shell->doStart( 100 ); for ( unsigned int i = 0; i < n; ++i ) init[i] = 0; // be sure we don't retain old info. init.clear(); Field< double >::getVec( a1, "outputValue", init ); cout << endl; for ( unsigned int i = 0; i < n; ++i ) { cout << i << " " << init[i] << " "; if ( i % 5 == 4 ) cout << endl; } shell->doDelete( a1 ); }
void testHSolvePassive() { // TEST_BEGIN; Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); vector< int* > childArray; vector< unsigned int > childArraySize; /** * We test passive-cable solver for the following cell: * * Soma---> 15 - 14 - 13 - 12 * | | * | L 11 - 10 * | * L 16 - 17 - 18 - 19 * | * L 9 - 8 - 7 - 6 - 5 * | | * | L 4 - 3 * | * L 2 - 1 - 0 * * The numbers are the hines indices of compartments. Compartment X is the * child of compartment Y if X is one level further away from the soma (#15) * than Y. So #17 is the parent of #'s 2, 9 and 18. */ int childArray_1[ ] = { /* c0 */ -1, /* c1 */ -1, 0, /* c2 */ -1, 1, /* c3 */ -1, /* c4 */ -1, 3, /* c5 */ -1, /* c6 */ -1, 5, /* c7 */ -1, 4, 6, /* c8 */ -1, 7, /* c9 */ -1, 8, /* c10 */ -1, /* c11 */ -1, 10, /* c12 */ -1, /* c13 */ -1, 12, /* c14 */ -1, 11, 13, /* c15 */ -1, 14, 16, /* c16 */ -1, 17, /* c17 */ -1, 2, 9, 18, /* c18 */ -1, 19, /* c19 */ -1, }; childArray.push_back( childArray_1 ); childArraySize.push_back( sizeof( childArray_1 ) / sizeof( int ) ); /** * Cell 2: * * 3 * | * Soma---> 2 * / \ * / \ * 1 0 * */ int childArray_2[ ] = { /* c0 */ -1, /* c1 */ -1, /* c2 */ -1, 0, 1, 3, /* c3 */ -1, }; childArray.push_back( childArray_2 ); childArraySize.push_back( sizeof( childArray_2 ) / sizeof( int ) ); /** * Cell 3: * * 3 * | * 2 * / \ * / \ * 1 0 <--- Soma * */ int childArray_3[ ] = { /* c0 */ -1, 2, /* c1 */ -1, /* c2 */ -1, 1, 3, /* c3 */ -1, }; childArray.push_back( childArray_3 ); childArraySize.push_back( sizeof( childArray_3 ) / sizeof( int ) ); /** * Cell 4: * * 3 <--- Soma * | * 2 * / \ * / \ * 1 0 * */ int childArray_4[ ] = { /* c0 */ -1, /* c1 */ -1, /* c2 */ -1, 0, 1, /* c3 */ -1, 2, }; childArray.push_back( childArray_4 ); childArraySize.push_back( sizeof( childArray_4 ) / sizeof( int ) ); /** * Cell 5: * * 1 <--- Soma * | * 2 * / \ * 4 0 * / \ * 3 5 * */ int childArray_5[ ] = { /* c0 */ -1, /* c1 */ -1, 2, /* c2 */ -1, 0, 4, /* c3 */ -1, /* c4 */ -1, 3, 5, /* c5 */ -1, }; childArray.push_back( childArray_5 ); childArraySize.push_back( sizeof( childArray_5 ) / sizeof( int ) ); /** * Cell 6: * * 3 <--- Soma * L 4 * L 6 * L 5 * L 2 * L 1 * L 0 * */ int childArray_6[ ] = { /* c0 */ -1, /* c1 */ -1, /* c2 */ -1, /* c3 */ -1, 4, /* c4 */ -1, 0, 1, 2, 5, 6, /* c5 */ -1, /* c6 */ -1, }; childArray.push_back( childArray_6 ); childArraySize.push_back( sizeof( childArray_6 ) / sizeof( int ) ); /** * Cell 7: Single compartment */ int childArray_7[ ] = { /* c0 */ -1, }; childArray.push_back( childArray_7 ); childArraySize.push_back( sizeof( childArray_7 ) / sizeof( int ) ); /** * Cell 8: 3 compartments; soma is in the middle. */ int childArray_8[ ] = { /* c0 */ -1, /* c1 */ -1, 0, 2, /* c2 */ -1, }; childArray.push_back( childArray_8 ); childArraySize.push_back( sizeof( childArray_8 ) / sizeof( int ) ); /** * Cell 9: 3 compartments; first compartment is soma. */ int childArray_9[ ] = { /* c0 */ -1, 1, /* c1 */ -1, 2, /* c2 */ -1, }; childArray.push_back( childArray_9 ); childArraySize.push_back( sizeof( childArray_9 ) / sizeof( int ) ); //////////////////////////////////////////////////////////////////////////// // Run tests //////////////////////////////////////////////////////////////////////////// /* * Solver instance. */ HSolvePassive HP; /* * This is the full reference matrix which will be compared to its sparse * implementation. */ vector< vector< double > > matrix; /* * Model details. */ double dt = 1.0; vector< TreeNodeStruct > tree; vector< double > Em; vector< double > B; vector< double > V; vector< double > VMid; /* * Loop over cells. */ int i; int j; //~ bool success; int nCompt; int* array; unsigned int arraySize; for ( unsigned int cell = 0; cell < childArray.size(); cell++ ) { array = childArray[ cell ]; arraySize = childArraySize[ cell ]; nCompt = count( array, array + arraySize, -1 ); ////////////////////////////////////////// // Prepare local information on cell ////////////////////////////////////////// tree.clear(); tree.resize( nCompt ); Em.clear(); V.clear(); for ( i = 0; i < nCompt; i++ ) { tree[ i ].Ra = 15.0 + 3.0 * i; tree[ i ].Rm = 45.0 + 15.0 * i; tree[ i ].Cm = 500.0 + 200.0 * i * i; Em.push_back( -0.06 ); V.push_back( -0.06 + 0.01 * i ); } int count = -1; for ( unsigned int a = 0; a < arraySize; a++ ) if ( array[ a ] == -1 ) count++; else tree[ count ].children.push_back( array[ a ] ); ////////////////////////////////////////// // Create cell inside moose; setup solver. ////////////////////////////////////////// Id n = shell->doCreate( "Neutral", Id(), "n", 1 ); vector< Id > c( nCompt ); for ( i = 0; i < nCompt; i++ ) { ostringstream name; name << "c" << i; c[ i ] = shell->doCreate( "Compartment", n, name.str() , 1); Field< double >::set( c[ i ], "Ra", tree[ i ].Ra ); Field< double >::set( c[ i ], "Rm", tree[ i ].Rm ); Field< double >::set( c[ i ], "Cm", tree[ i ].Cm ); Field< double >::set( c[ i ], "Em", Em[ i ] ); Field< double >::set( c[ i ], "initVm", V[ i ] ); Field< double >::set( c[ i ], "Vm", V[ i ] ); } for ( i = 0; i < nCompt; i++ ) { vector< unsigned int >& child = tree[ i ].children; for ( j = 0; j < ( int )( child.size() ); j++ ) { ObjId mid = shell->doAddMsg( "Single", c[ i ], "axial", c[ child[ j ] ], "raxial" ); ASSERT( ! mid.bad(), "Creating test model" ); } } HP.setup( c[ 0 ], dt ); /* * Here we check if the cell was read in correctly by the solver. * This test only checks if all the created compartments were read in. * It doesn't check if they have been assigned hines' indices correctly. */ vector< Id >& hc = HP.compartmentId_; ASSERT( ( int )( hc.size() ) == nCompt, "Tree traversal" ); for ( i = 0; i < nCompt; i++ ) ASSERT( find( hc.begin(), hc.end(), c[ i ] ) != hc.end(), "Tree traversal" ); ////////////////////////////////////////// // Setup local matrix ////////////////////////////////////////// /* * First we need to ensure that the hines' indices for the local model * and those inside the solver match. If the numbering is different, * then the matrices will not agree. * * In the following, we find out the indices assigned by the solver, * and impose them on the local data structures. */ // Figure out new indices vector< unsigned int > permutation( nCompt ); for ( i = 0; i < nCompt; i++ ) { unsigned int newIndex = find( hc.begin(), hc.end(), c[ i ] ) - hc.begin(); permutation[ i ] = newIndex; } // Shuffle compartment properties according to new order permute< TreeNodeStruct >( tree, permutation ); permute< double >( Em, permutation ); permute< double >( V, permutation ); // Update indices of children for ( i = 0; i < nCompt; i++ ) { vector< unsigned int >& child = tree[ i ].children; for ( j = 0; j < ( int )( child.size() ); j++ ) child[ j ] = permutation[ child[ j ] ]; } // Create local reference matrix makeFullMatrix( tree, dt, matrix ); VMid.resize( nCompt ); B.resize( nCompt ); vector< vector< double > > matrixCopy; matrixCopy.assign( matrix.begin(), matrix.end() ); ////////////////////////////////////////// // Run comparisons ////////////////////////////////////////// double tolerance; /* * Compare initial matrices */ tolerance = 2.0; for ( i = 0; i < nCompt; ++i ) for ( j = 0; j < nCompt; ++j ) { ostringstream error; error << "Testing matrix construction:" << " Cell# " << cell + 1 << " A(" << i << ", " << j << ")"; ASSERT ( isClose< double >( HP.getA( i, j ), matrix[ i ][ j ], tolerance ), error.str() ); } /* * * Gaussian elimination * */ tolerance = 4.0; // ratio to machine epsilon for ( int pass = 0; pass < 2; pass++ ) { /* * First update terms in the equation. This involves setting up the B * in Ax = B, using the latest voltage values. Also, the coefficients * stored in A have to be restored to their original values, since * the matrix is modified at the end of every pass of gaussian * elimination. */ // Do so in the solver.. HP.updateMatrix(); // ..locally.. matrix.assign( matrixCopy.begin(), matrixCopy.end() ); for ( i = 0; i < nCompt; i++ ) B[ i ] = V[ i ] * tree[ i ].Cm / ( dt / 2.0 ) + Em[ i ] / tree[ i ].Rm; // ..and compare B. for ( i = 0; i < nCompt; ++i ) { ostringstream error; error << "Updating right-hand side values:" << " Pass " << pass << " Cell# " << cell + 1 << " B(" << i << ")"; ASSERT ( isClose< double >( HP.getB( i ), B[ i ], tolerance ), error.str() ); } /* * Forward elimination.. */ // ..in solver.. HP.forwardEliminate(); // ..and locally.. int k; for ( i = 0; i < nCompt - 1; i++ ) for ( j = i + 1; j < nCompt; j++ ) { double div = matrix[ j ][ i ] / matrix[ i ][ i ]; for ( k = 0; k < nCompt; k++ ) matrix[ j ][ k ] -= div * matrix[ i ][ k ]; B[ j ] -= div * B[ i ]; } // ..then compare A.. for ( i = 0; i < nCompt; ++i ) for ( j = 0; j < nCompt; ++j ) { ostringstream error; error << "Forward elimination:" << " Pass " << pass << " Cell# " << cell + 1 << " A(" << i << ", " << j << ")"; ASSERT ( isClose< double >( HP.getA( i, j ), matrix[ i ][ j ], tolerance ), error.str() ); } // ..and also B. for ( i = 0; i < nCompt; ++i ) { ostringstream error; error << "Forward elimination:" << " Pass " << pass << " Cell# " << cell + 1 << " B(" << i << ")"; ASSERT ( isClose< double >( HP.getB( i ), B[ i ], tolerance ), error.str() ); } /* * Backward substitution.. */ // ..in solver.. HP.backwardSubstitute(); // ..and full back-sub on local matrix equation.. for ( i = nCompt - 1; i >= 0; i-- ) { VMid[ i ] = B[ i ]; for ( j = nCompt - 1; j > i; j-- ) VMid[ i ] -= VMid[ j ] * matrix[ i ][ j ]; VMid[ i ] /= matrix[ i ][ i ]; V[ i ] = 2 * VMid[ i ] - V[ i ]; } // ..and then compare VMid. for ( i = nCompt - 1; i >= 0; i-- ) { ostringstream error; error << "Back substitution:" << " Pass " << pass << " Cell# " << cell + 1 << " VMid(" << i << ")"; ASSERT ( isClose< double >( HP.getVMid( i ), VMid[ i ], tolerance ), error.str() ); } for ( i = nCompt - 1; i >= 0; i-- ) { ostringstream error; error << "Back substitution:" << " Pass " << pass << " Cell# " << cell + 1 << " V(" << i << ")"; ASSERT ( isClose< double >( HP.getV( i ), V[ i ], tolerance ), error.str() ); } } // cleanup shell->doDelete( n ); } // TEST_END; }
void testCompartmentProcess() { Shell* shell = reinterpret_cast< Shell* >( Id().eref().data() ); unsigned int size = 100; double Rm = 1.0; double Ra = 0.01; double Cm = 1.0; double dt = 0.01; double runtime = 10; double lambda = sqrt( Rm / Ra ); Id cid = shell->doCreate( "Compartment", Id(), "compt", size ); assert( Id::isValid(cid)); assert( cid.eref().element()->numData() == size ); bool ret = Field< double >::setRepeat( cid, "initVm", 0.0 ); assert( ret ); Field< double >::setRepeat( cid, "inject", 0 ); // Only apply current injection in first compartment Field< double >::set( ObjId( cid, 0 ), "inject", 1.0 ); Field< double >::setRepeat( cid, "Rm", Rm ); Field< double >::setRepeat( cid, "Ra", Ra ); Field< double >::setRepeat( cid, "Cm", Cm ); Field< double >::setRepeat( cid, "Em", 0 ); Field< double >::setRepeat( cid, "Vm", 0 ); // The diagonal message has a default stride of 1, so it connects // successive compartments. // Note that the src and dest elements here are identical, so we cannot // use a shared message. The messaging system will get confused about // direction to send data. So we split up the shared message that we // might have used, below, into two individual messages. // MsgId mid = shell->doAddMsg( "Diagonal", ObjId( cid ), "raxial", ObjId( cid ), "axial" ); ObjId mid = shell->doAddMsg( "Diagonal", ObjId( cid ), "axialOut", ObjId( cid ), "handleAxial" ); assert( !mid.bad()); // mid = shell->doAddMsg( "Diagonal", ObjId( cid ), "handleRaxial", ObjId( cid ), "raxialOut" ); mid = shell->doAddMsg( "Diagonal", ObjId( cid ), "raxialOut", ObjId( cid ), "handleRaxial" ); assert( !mid.bad() ); // ObjId managerId = Msg::getMsg( mid )->manager().objId(); // Make the raxial data go from high to lower index compartments. Field< int >::set( mid, "stride", -1 ); #ifdef DO_SPATIAL_TESTS shell->doSetClock( 0, dt ); shell->doSetClock( 1, dt ); // Ensure that the inter_compt msgs go between nodes once every dt. shell->doSetClock( 9, dt ); shell->doUseClock( "/compt", "init", 0 ); shell->doUseClock( "/compt", "process", 1 ); shell->doReinit(); shell->doStart( runtime ); double Vmax = Field< double >::get( ObjId( cid, 0 ), "Vm" ); double delta = 0.0; // We measure only the first 50 compartments as later we // run into end effects because it is not an infinite cable for ( unsigned int i = 0; i < size; i++ ) { double Vm = Field< double >::get( ObjId( cid, i ), "Vm" ); double x = Vmax * exp( - static_cast< double >( i ) / lambda ); delta += ( Vm - x ) * ( Vm - x ); // cout << i << " (x, Vm) = ( " << x << ", " << Vm << " )\n"; } assert( delta < 1.0e-5 ); #endif // DO_SPATIAL_TESTS shell->doDelete( cid ); cout << "." << flush; }