DEF_TEST(PathOpsAngleFindQuadEpsilon, reporter) { if (gDisableAngleTests) { return; } SkRandom ran; int maxEpsilon = 0; double maxAngle = 0; for (int index = 0; index < 100000; ++index) { SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}}; float t = ran.nextRangeF(0.0001f, 1); SkDPoint dPt = line.ptAtT(t); float t2 = ran.nextRangeF(0.0001f, 1); SkDPoint qPt = line.ptAtT(t2); float t3 = ran.nextRangeF(0.0001f, 1); SkDPoint qPt2 = line.ptAtT(t3); qPt.fX += qPt2.fY; qPt.fY -= qPt2.fX; QuadPts q = {{line[0], dPt, qPt}}; SkDQuad quad; quad.debugSet(q.fPts); // binary search for maximum movement of quad[1] towards test that still has 1 intersection double moveT = 0.5f; double deltaT = moveT / 2; SkDPoint last; do { last = quad[1]; quad[1].fX = dPt.fX - line[1].fY * moveT; quad[1].fY = dPt.fY + line[1].fX * moveT; SkIntersections i; i.intersect(quad, line); REPORTER_ASSERT(reporter, i.used() > 0); if (i.used() == 1) { moveT += deltaT; } else { moveT -= deltaT; } deltaT /= 2; } while (last.asSkPoint() != quad[1].asSkPoint()); float p1 = SkDoubleToScalar(line[1].fX * last.fY); float p2 = SkDoubleToScalar(line[1].fY * last.fX); int p1Bits = SkFloatAs2sCompliment(p1); int p2Bits = SkFloatAs2sCompliment(p2); int epsilon = SkTAbs(p1Bits - p2Bits); if (maxEpsilon < epsilon) { SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g" " pt={%1.7g, %1.7g} epsilon=%d\n", line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, epsilon); maxEpsilon = epsilon; } double a1 = atan2(line[1].fY, line[1].fX); double a2 = atan2(last.fY, last.fX); double angle = fabs(a1 - a2); if (maxAngle < angle) { SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g" " pt={%1.7g, %1.7g} angle=%1.7g\n", line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, angle); maxAngle = angle; } } }
static void oneOffTest(skiatest::Reporter* reporter) { for (size_t index = 0; index < testSetCount; ++index) { const QuadPts& q = testSet[index]; SkDQuad quad; quad.debugSet(q.fPts); SkReduceOrder reducer; SkDEBUGCODE(int result = ) reducer.reduce(quad); SkASSERT(result == 3); } }
static void standardTestCases(skiatest::Reporter* reporter) { size_t index; SkReduceOrder reducer; int order; enum { RunAll, RunQuadraticLines, RunQuadraticModLines, RunNone } run = RunAll; int firstTestIndex = 0; #if 0 run = RunQuadraticLines; firstTestIndex = 1; #endif int firstQuadraticLineTest = run == RunAll ? 0 : run == RunQuadraticLines ? firstTestIndex : SK_MaxS32; int firstQuadraticModLineTest = run == RunAll ? 0 : run == RunQuadraticModLines ? firstTestIndex : SK_MaxS32; for (index = firstQuadraticLineTest; index < quadraticLines_count; ++index) { const QuadPts& q = quadraticLines[index]; SkDQuad quad; quad.debugSet(q.fPts); order = reducer.reduce(quad); if (order != 2) { SkDebugf("[%d] line quad order=%d\n", (int) index, order); } } for (index = firstQuadraticModLineTest; index < quadraticModEpsilonLines_count; ++index) { const QuadPts& q = quadraticModEpsilonLines[index]; SkDQuad quad; quad.debugSet(q.fPts); order = reducer.reduce(quad); if (order != 2 && order != 3) { // FIXME: data probably is not good SkDebugf("[%d] line mod quad order=%d\n", (int) index, order); } } }
DEF_TEST(PathOpsQuadLineIntersection, reporter) { for (size_t index = 0; index < lineQuadTests_count; ++index) { int iIndex = static_cast<int>(index); const QuadPts& q = lineQuadTests[index].quad; SkDQuad quad; quad.debugSet(q.fPts); SkASSERT(ValidQuad(quad)); const SkDLine& line = lineQuadTests[index].line; SkASSERT(ValidLine(line)); SkReduceOrder reducer1, reducer2; int order1 = reducer1.reduce(quad); int order2 = reducer2.reduce(line); if (order1 < 3) { SkDebugf("%s [%d] quad order=%d\n", __FUNCTION__, iIndex, order1); REPORTER_ASSERT(reporter, 0); } if (order2 < 2) { SkDebugf("%s [%d] line order=%d\n", __FUNCTION__, iIndex, order2); REPORTER_ASSERT(reporter, 0); } SkIntersections intersections; bool flipped = false; int result = doIntersect(intersections, quad, line, flipped); REPORTER_ASSERT(reporter, result == lineQuadTests[index].result); if (intersections.used() <= 0) { continue; } for (int pt = 0; pt < result; ++pt) { double tt1 = intersections[0][pt]; REPORTER_ASSERT(reporter, tt1 >= 0 && tt1 <= 1); SkDPoint t1 = quad.ptAtT(tt1); double tt2 = intersections[1][pt]; REPORTER_ASSERT(reporter, tt2 >= 0 && tt2 <= 1); SkDPoint t2 = line.ptAtT(tt2); if (!t1.approximatelyEqual(t2)) { SkDebugf("%s [%d,%d] x!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, iIndex, pt, tt1, t1.fX, t1.fY, tt2, t2.fX, t2.fY); REPORTER_ASSERT(reporter, 0); } if (!t1.approximatelyEqual(lineQuadTests[index].expected[0]) && (lineQuadTests[index].result == 1 || !t1.approximatelyEqual(lineQuadTests[index].expected[1]))) { SkDebugf("%s t1=(%1.9g,%1.9g)\n", __FUNCTION__, t1.fX, t1.fY); REPORTER_ASSERT(reporter, 0); } } } }
static void testOneOffs(skiatest::Reporter* reporter) { bool flipped = false; for (size_t index = 0; index < oneOffs_count; ++index) { const QuadPts& q = oneOffs[index].quad; SkDQuad quad; quad.debugSet(q.fPts); SkASSERT(ValidQuad(quad)); const SkDLine& line = oneOffs[index].line; SkASSERT(ValidLine(line)); SkIntersections intersections; int result = doIntersect(intersections, quad, line, flipped); for (int inner = 0; inner < result; ++inner) { double quadT = intersections[0][inner]; SkDPoint quadXY = quad.ptAtT(quadT); double lineT = intersections[1][inner]; SkDPoint lineXY = line.ptAtT(lineT); if (!quadXY.approximatelyEqual(lineXY)) { quadXY.approximatelyEqual(lineXY); SkDebugf(""); } REPORTER_ASSERT(reporter, quadXY.approximatelyEqual(lineXY)); } } }