示例#1
0
文件: CodexTest.cpp 项目: sheuan/skia
static void test_dimensions(skiatest::Reporter* r, const char path[]) {
    // Create the codec from the resource file
    SkAutoTDelete<SkStream> stream(resource(path));
    if (!stream) {
        SkDebugf("Missing resource '%s'\n", path);
        return;
    }
    SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach()));
    if (!codec) {
        ERRORF(r, "Unable to create codec '%s'", path);
        return;
    }

    // Check that the decode is successful for a variety of scales
    for (float scale = -0.05f; scale < 2.0f; scale += 0.05f) {
        // Scale the output dimensions
        SkISize scaledDims = codec->getScaledDimensions(scale);
        SkImageInfo scaledInfo = codec->getInfo().makeWH(scaledDims.width(), scaledDims.height());

        // Set up for the decode
        size_t rowBytes = scaledDims.width() * sizeof(SkPMColor);
        size_t totalBytes = scaledInfo.getSafeSize(rowBytes);
        SkAutoTMalloc<SkPMColor> pixels(totalBytes);

        SkImageGenerator::Result result =
                codec->getPixels(scaledInfo, pixels.get(), rowBytes, NULL, NULL, NULL);
        REPORTER_ASSERT(r, SkImageGenerator::kSuccess == result);
    }
}
示例#2
0
TEST_F(DeferredImageDecoderTest, frameOpacity) {
  std::unique_ptr<DeferredImageDecoder> decoder = DeferredImageDecoder::create(
      m_data, true, ImageDecoder::AlphaPremultiplied,
      ColorBehavior::transformToTargetForTesting());

  SkImageInfo pixInfo = SkImageInfo::MakeN32Premul(1, 1);

  size_t rowBytes = pixInfo.minRowBytes();
  size_t size = pixInfo.getSafeSize(rowBytes);

  Vector<char> storage(size);
  SkPixmap pixmap(pixInfo, storage.data(), rowBytes);

  // Before decoding, the frame is not known to be opaque.
  sk_sp<SkImage> frame = decoder->createFrameAtIndex(0);
  ASSERT_TRUE(frame);
  EXPECT_FALSE(frame->isOpaque());

  // Force a lazy decode by reading pixels.
  EXPECT_TRUE(frame->readPixels(pixmap, 0, 0));

  // After decoding, the frame is known to be opaque.
  frame = decoder->createFrameAtIndex(0);
  ASSERT_TRUE(frame);
  EXPECT_TRUE(frame->isOpaque());

  // Re-generating the opaque-marked frame should not fail.
  EXPECT_TRUE(frame->readPixels(pixmap, 0, 0));
}
示例#3
0
bool SkImageGenerator::tryGenerateBitmap(SkBitmap* bitmap, const SkImageInfo* infoPtr) {
    const SkImageInfo info = infoPtr ? *infoPtr : this->getInfo();
    const size_t rowBytes = info.minRowBytes();
    const size_t pixelSize = info.getSafeSize(rowBytes);
    if (0 == pixelSize) {
        return false;
    }

    SkAutoFree pixelStorage(sk_malloc_flags(pixelSize, 0));
    void* pixels = pixelStorage.get();
    if (!pixels) {
        return false;
    }
    
    SkPMColor ctStorage[256];
    int ctCount = 0;
    
    if (!this->getPixels(info, pixels, rowBytes, ctStorage, &ctCount)) {
        return false;
    }
    
    SkAutoTUnref<SkColorTable> ctable;
    if (ctCount > 0) {
        SkASSERT(kIndex_8_SkColorType == info.colorType());
        ctable.reset(new SkColorTable(ctStorage, ctCount));
    } else {
        SkASSERT(kIndex_8_SkColorType != info.colorType());
    }
    
    return bitmap->installPixels(info, pixelStorage.detach(), rowBytes, ctable,
                                 release_malloc_proc, nullptr);
}
示例#4
0
static void test_dimensions(skiatest::Reporter* r, const char path[]) {
    // Create the codec from the resource file
    SkAutoTDelete<SkStream> stream(resource(path));
    if (!stream) {
        SkDebugf("Missing resource '%s'\n", path);
        return;
    }
    SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromStream(stream.detach()));
    if (!codec) {
        ERRORF(r, "Unable to create codec '%s'", path);
        return;
    }

    // Check that the decode is successful for a variety of scales
    for (int sampleSize = 1; sampleSize < 32; sampleSize++) {
        // Scale the output dimensions
        SkISize scaledDims = codec->getSampledDimensions(sampleSize);
        SkImageInfo scaledInfo = codec->getInfo()
                .makeWH(scaledDims.width(), scaledDims.height())
                .makeColorType(kN32_SkColorType);

        // Set up for the decode
        size_t rowBytes = scaledDims.width() * sizeof(SkPMColor);
        size_t totalBytes = scaledInfo.getSafeSize(rowBytes);
        SkAutoTMalloc<SkPMColor> pixels(totalBytes);

        SkAndroidCodec::AndroidOptions options;
        options.fSampleSize = sampleSize;
        SkCodec::Result result =
                codec->getAndroidPixels(scaledInfo, pixels.get(), rowBytes, &options);
        REPORTER_ASSERT(r, SkCodec::kSuccess == result);
    }
}
TEST_F(DeferredImageDecoderTest, frameOpacity)
{
    std::unique_ptr<ImageDecoder> actualDecoder = ImageDecoder::create(*m_data,
        ImageDecoder::AlphaPremultiplied, ImageDecoder::GammaAndColorProfileApplied);
    std::unique_ptr<DeferredImageDecoder> decoder = DeferredImageDecoder::createForTesting(std::move(actualDecoder));
    decoder->setData(*m_data, true);

    SkImageInfo pixInfo = SkImageInfo::MakeN32Premul(1, 1);

    size_t rowBytes = pixInfo.minRowBytes();
    size_t size = pixInfo.getSafeSize(rowBytes);

    SkAutoMalloc storage(size);
    SkPixmap pixmap(pixInfo, storage.get(), rowBytes);

    // Before decoding, the frame is not known to be opaque.
    RefPtr<SkImage> frame = decoder->createFrameAtIndex(0);
    ASSERT_TRUE(frame);
    EXPECT_FALSE(frame->isOpaque());

    // Force a lazy decode by reading pixels.
    EXPECT_TRUE(frame->readPixels(pixmap, 0, 0));

    // After decoding, the frame is known to be opaque.
    frame = decoder->createFrameAtIndex(0);
    ASSERT_TRUE(frame);
    EXPECT_TRUE(frame->isOpaque());

    // Re-generating the opaque-marked frame should not fail.
    EXPECT_TRUE(frame->readPixels(pixmap, 0, 0));
}
示例#6
0
size_t SkAutoPixmapStorage::AllocSize(const SkImageInfo& info, size_t* rowBytes) {
    size_t rb = info.minRowBytes();
    if (rowBytes) {
        *rowBytes = rb;
    }
    return info.getSafeSize(rb);
}
static void check_fill(skiatest::Reporter* r,
                       const SkImageInfo& imageInfo,
                       uint32_t startRow,
                       uint32_t endRow,
                       size_t rowBytes,
                       uint32_t offset,
                       uint32_t colorOrIndex) {

    // Calculate the total size of the image in bytes.  Use the smallest possible size.
    // The offset value tells us to adjust the pointer from the memory we allocate in order
    // to test on different memory alignments.  If offset is nonzero, we need to increase the
    // size of the memory we allocate in order to make sure that we have enough.  We are
    // still allocating the smallest possible size.
    const size_t totalBytes = imageInfo.getSafeSize(rowBytes) + offset;

    // Create fake image data where every byte has a value of 0
    SkAutoTDeleteArray<uint8_t> storage(new uint8_t[totalBytes]);
    memset(storage.get(), 0, totalBytes);
    // Adjust the pointer in order to test on different memory alignments
    uint8_t* imageData = storage.get() + offset;
    uint8_t* imageStart = imageData + rowBytes * startRow;
    const SkImageInfo fillInfo = imageInfo.makeWH(imageInfo.width(), endRow - startRow + 1);
    SkSampler::Fill(fillInfo, imageStart, rowBytes, colorOrIndex, SkCodec::kNo_ZeroInitialized);

    // Ensure that the pixels are filled properly
    // The bots should catch any memory corruption
    uint8_t* indexPtr = imageData + startRow * rowBytes;
    uint8_t* grayPtr = indexPtr;
    uint32_t* colorPtr = (uint32_t*) indexPtr;
    uint16_t* color565Ptr = (uint16_t*) indexPtr;
    for (uint32_t y = startRow; y <= endRow; y++) {
        for (int32_t x = 0; x < imageInfo.width(); x++) {
            switch (imageInfo.colorType()) {
                case kIndex_8_SkColorType:
                    REPORTER_ASSERT(r, kFillIndex == indexPtr[x]);
                    break;
                case kN32_SkColorType:
                    REPORTER_ASSERT(r, kFillColor == colorPtr[x]);
                    break;
                case kGray_8_SkColorType:
                    REPORTER_ASSERT(r, kFillGray == grayPtr[x]);
                    break;
                case kRGB_565_SkColorType:
                    REPORTER_ASSERT(r, kFill565 == color565Ptr[x]);
                    break;
                default:
                    REPORTER_ASSERT(r, false);
                    break;
            }
        }
        indexPtr += rowBytes;
        colorPtr = (uint32_t*) indexPtr;
    }
}
ImagePattern::ImagePattern(PassRefPtr<Image> image, RepeatMode repeatMode)
    : Pattern(repeatMode)
    , m_tileImage(image->imageForCurrentFrame())
{
    if (m_tileImage) {
        // TODO(fmalita): mechanism to extract the actual SkImageInfo from an SkImage?
        const SkImageInfo info =
            SkImageInfo::MakeN32Premul(m_tileImage->width(), m_tileImage->height());
        adjustExternalMemoryAllocated(info.getSafeSize(info.minRowBytes()));
    }
}
示例#9
0
DEF_TEST(ImageDataRef, reporter) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1);
    size_t rowBytes = info.minRowBytes();
    size_t size = info.getSafeSize(rowBytes);
    SkData* data = SkData::NewUninitialized(size);
    REPORTER_ASSERT(reporter, data->unique());
    SkImage* image = SkImage::NewRasterData(info, data, rowBytes);
    REPORTER_ASSERT(reporter, !data->unique());
    image->unref();
    REPORTER_ASSERT(reporter, data->unique());
    data->unref();
}
示例#10
0
// TODO(ccameron): ImagePattern should not draw to a globally set color space.
// https://crbug.com/672306
ImagePattern::ImagePattern(PassRefPtr<Image> image, RepeatMode repeatMode)
    : Pattern(repeatMode),
      m_tileImage(image->imageForCurrentFrame(
          ColorBehavior::transformToGlobalTarget())) {
  m_previousLocalMatrix.setIdentity();
  if (m_tileImage) {
    // TODO(fmalita): mechanism to extract the actual SkImageInfo from an
    // SkImage?
    const SkImageInfo info = SkImageInfo::MakeN32Premul(
        m_tileImage->width() + (isRepeatX() ? 0 : 2),
        m_tileImage->height() + (isRepeatY() ? 0 : 2));
    adjustExternalMemoryAllocated(info.getSafeSize(info.minRowBytes()));
  }
}
示例#11
0
sk_sp<SkImage> SkImage::makeNonTextureImage() const {
    if (!this->isTextureBacked()) {
        return sk_ref_sp(const_cast<SkImage*>(this));
    }
    SkImageInfo info = as_IB(this)->onImageInfo();
    size_t rowBytes = info.minRowBytes();
    size_t size = info.getSafeSize(rowBytes);
    auto data = SkData::MakeUninitialized(size);
    if (!data) {
        return nullptr;
    }
    SkPixmap pm(info, data->writable_data(), rowBytes);
    if (!this->readPixels(pm, 0, 0, kDisallow_CachingHint)) {
        return nullptr;
    }
    return MakeRasterData(info, data, rowBytes);
}
sk_sp<SkPixelRef> SkMallocPixelRef::MakeWithData(const SkImageInfo& info,
                                                size_t rowBytes,
                                                sk_sp<SkColorTable> ctable,
                                                sk_sp<SkData> data) {
    SkASSERT(data != nullptr);
    if (!is_valid(info, ctable.get())) {
        return nullptr;
    }
    if ((rowBytes < info.minRowBytes()) || (data->size() < info.getSafeSize(rowBytes))) {
        return nullptr;
    }
    // must get this address before we call release
    void* pixels = const_cast<void*>(data->data());
    SkPixelRef* pr = new SkMallocPixelRef(info, pixels, rowBytes, std::move(ctable),
                                          sk_data_releaseproc, data.release());
    pr->setImmutable(); // since we were created with (immutable) data
    return sk_sp<SkPixelRef>(pr);
}
示例#13
0
static void test_newraster(skiatest::Reporter* reporter) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
    const size_t minRowBytes = info.minRowBytes();
    const size_t size = info.getSafeSize(minRowBytes);
    SkAutoMalloc storage(size);
    SkPMColor* baseAddr = static_cast<SkPMColor*>(storage.get());
    sk_bzero(baseAddr, size);

    SkCanvas* canvas = SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes);
    REPORTER_ASSERT(reporter, canvas);

    SkImageInfo info2;
    size_t rowBytes;
    const SkPMColor* addr = (const SkPMColor*)canvas->peekPixels(&info2, &rowBytes);
    REPORTER_ASSERT(reporter, addr);
    REPORTER_ASSERT(reporter, info == info2);
    REPORTER_ASSERT(reporter, minRowBytes == rowBytes);
    for (int y = 0; y < info.height(); ++y) {
        for (int x = 0; x < info.width(); ++x) {
            REPORTER_ASSERT(reporter, 0 == addr[x]);
        }
        addr = (const SkPMColor*)((const char*)addr + rowBytes);
    }
    SkDELETE(canvas);

    // now try a deliberately bad info
    info = info.makeWH(-1, info.height());
    REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));

    // too big
    info = info.makeWH(1 << 30, 1 << 30);
    REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));

    // not a valid pixel type
    info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType());
    REPORTER_ASSERT(reporter, NULL == SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes));

    // We should succeed with a zero-sized valid info
    info = SkImageInfo::MakeN32Premul(0, 0);
    canvas = SkCanvas::NewRasterDirect(info, baseAddr, minRowBytes);
    REPORTER_ASSERT(reporter, canvas);
    SkDELETE(canvas);
}
示例#14
0
static void check_fill(skiatest::Reporter* r,
                       const SkImageInfo& imageInfo,
                       uint32_t startRow,
                       uint32_t endRow,
                       size_t rowBytes,
                       uint32_t offset,
                       uint32_t colorOrIndex,
                       SkPMColor* colorTable) {

    // Calculate the total size of the image in bytes.  Use the smallest possible size.
    // The offset value tells us to adjust the pointer from the memory we allocate in order
    // to test on different memory alignments.  If offset is nonzero, we need to increase the
    // size of the memory we allocate in order to make sure that we have enough.  We are
    // still allocating the smallest possible size.
    const size_t totalBytes = imageInfo.getSafeSize(rowBytes) + offset;

    // Create fake image data where every byte has a value of 0
    SkAutoTDeleteArray<uint8_t> storage(SkNEW_ARRAY(uint8_t, totalBytes));
    memset(storage.get(), 0, totalBytes);
    // Adjust the pointer in order to test on different memory alignments
    uint8_t* imageData = storage.get() + offset;
    uint8_t* imageStart = imageData + rowBytes * startRow;

    // Fill image with the fill value starting at the indicated row
    SkSwizzler::Fill(imageStart, imageInfo, rowBytes, endRow - startRow + 1, colorOrIndex,
            colorTable);

    // Ensure that the pixels are filled properly
    // The bots should catch any memory corruption
    uint8_t* indexPtr = imageData + startRow * rowBytes;
    uint32_t* colorPtr = (uint32_t*) indexPtr;
    for (uint32_t y = startRow; y <= endRow; y++) {
        for (int32_t x = 0; x < imageInfo.width(); x++) {
            if (kIndex_8_SkColorType == imageInfo.colorType()) {
                REPORTER_ASSERT(r, kFillIndex == indexPtr[x]);
            } else {
                REPORTER_ASSERT(r, kFillColor == colorPtr[x]);
            }
        }
        indexPtr += rowBytes;
        colorPtr = (uint32_t*) indexPtr;
    }
}
示例#15
0
static void test_newraster(skiatest::Reporter* reporter) {
    SkImageInfo info = SkImageInfo::MakeN32Premul(10, 10);
    const size_t minRowBytes = info.minRowBytes();
    const size_t size = info.getSafeSize(minRowBytes);
    SkAutoTMalloc<SkPMColor> storage(size);
    SkPMColor* baseAddr = storage.get();
    sk_bzero(baseAddr, size);

    std::unique_ptr<SkCanvas> canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
    REPORTER_ASSERT(reporter, canvas);

    SkPixmap pmap;
    const SkPMColor* addr = canvas->peekPixels(&pmap) ? pmap.addr32() : nullptr;
    REPORTER_ASSERT(reporter, addr);
    REPORTER_ASSERT(reporter, info == pmap.info());
    REPORTER_ASSERT(reporter, minRowBytes == pmap.rowBytes());
    for (int y = 0; y < info.height(); ++y) {
        for (int x = 0; x < info.width(); ++x) {
            REPORTER_ASSERT(reporter, 0 == addr[x]);
        }
        addr = (const SkPMColor*)((const char*)addr + pmap.rowBytes());
    }

    // now try a deliberately bad info
    info = info.makeWH(-1, info.height());
    REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));

    // too big
    info = info.makeWH(1 << 30, 1 << 30);
    REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));

    // not a valid pixel type
    info = SkImageInfo::Make(10, 10, kUnknown_SkColorType, info.alphaType());
    REPORTER_ASSERT(reporter, nullptr == SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes));

    // We should succeed with a zero-sized valid info
    info = SkImageInfo::MakeN32Premul(0, 0);
    canvas = SkCanvas::MakeRasterDirect(info, baseAddr, minRowBytes);
    REPORTER_ASSERT(reporter, canvas);
}
 sk_sp<SkPixelRef> SkMallocPixelRef::MakeUsing(void*(*alloc)(size_t),
                                               const SkImageInfo& info,
                                               size_t requestedRowBytes,
                                               sk_sp<SkColorTable> ctable) {
    if (!is_valid(info, ctable.get())) {
        return nullptr;
    }

    // only want to permit 31bits of rowBytes
    int64_t minRB = (int64_t)info.minRowBytes64();
    if (minRB < 0 || !sk_64_isS32(minRB)) {
        return nullptr;    // allocation will be too large
    }
    if (requestedRowBytes > 0 && (int32_t)requestedRowBytes < minRB) {
        return nullptr;    // cannot meet requested rowbytes
    }

    int32_t rowBytes;
    if (requestedRowBytes) {
        rowBytes = SkToS32(requestedRowBytes);
    } else {
        rowBytes = minRB;
    }

    int64_t bigSize = (int64_t)info.height() * rowBytes;
    if (!sk_64_isS32(bigSize)) {
        return nullptr;
    }

    size_t size = sk_64_asS32(bigSize);
    SkASSERT(size >= info.getSafeSize(rowBytes));
    void* addr = alloc(size);
    if (nullptr == addr) {
        return nullptr;
    }

     return sk_sp<SkPixelRef>(new SkMallocPixelRef(info, addr, rowBytes, std::move(ctable),
                                                   sk_free_releaseproc, nullptr));
}
示例#17
0
bool SkImageGenerator::tryGenerateBitmap(SkBitmap* bitmap, const SkImageInfo* infoPtr,
                                         SkBitmap::Allocator* allocator) {
    SkImageInfo info = infoPtr ? *infoPtr : this->getInfo();
    if (0 == info.getSafeSize(info.minRowBytes())) {
        return false;
    }
    if (!bitmap->setInfo(info)) {
        return reset_and_return_false(bitmap);
    }

    SkPMColor ctStorage[256];
    memset(ctStorage, 0xFF, sizeof(ctStorage)); // init with opaque-white for the moment
    SkAutoTUnref<SkColorTable> ctable(new SkColorTable(ctStorage, 256));
    if (!bitmap->tryAllocPixels(allocator, ctable)) {
        // SkResourceCache's custom allcator can'thandle ctables, so it may fail on
        // kIndex_8_SkColorTable.
        // skbug.com/4355
#if 1
        // ignroe the allocator, and see if we can succeed without it
        if (!bitmap->tryAllocPixels(nullptr, ctable)) {
            return reset_and_return_false(bitmap);
        }
#else
        // this is the up-scale technique, not fully debugged, but we keep it here at the moment
        // to remind ourselves that this might be better than ignoring the allocator.

        info = SkImageInfo::MakeN32(info.width(), info.height(), info.alphaType());
        if (!bitmap->setInfo(info)) {
            return reset_and_return_false(bitmap);
        }
        // we pass nullptr for the ctable arg, since we are now explicitly N32
        if (!bitmap->tryAllocPixels(allocator, nullptr)) {
            return reset_and_return_false(bitmap);
        }
#endif
    }

    bitmap->lockPixels();
    if (!bitmap->getPixels()) {
        return reset_and_return_false(bitmap);
    }

    int ctCount = 0;
    if (!this->getPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(),
                         ctStorage, &ctCount)) {
        return reset_and_return_false(bitmap);
    }

    if (ctCount > 0) {
        SkASSERT(kIndex_8_SkColorType == bitmap->colorType());
        // we and bitmap should be owners
        SkASSERT(!ctable->unique());

        // Now we need to overwrite the ctable we built earlier, with the correct colors.
        // This does mean that we may have made the table too big, but that cannot be avoided
        // until we can change SkImageGenerator's API to return us the ctable *before* we have to
        // allocate space for all the pixels.
        ctable->dangerous_overwriteColors(ctStorage, ctCount);
    } else {
        SkASSERT(kIndex_8_SkColorType != bitmap->colorType());
        // we should be the only owner
        SkASSERT(ctable->unique());
    }
    return true;
}
示例#18
0
SkCodec* SkIcoCodec::NewFromStream(SkStream* stream, Result* result) {
    // Ensure that we do not leak the input stream
    std::unique_ptr<SkStream> inputStream(stream);

    // Header size constants
    static const uint32_t kIcoDirectoryBytes = 6;
    static const uint32_t kIcoDirEntryBytes = 16;

    // Read the directory header
    std::unique_ptr<uint8_t[]> dirBuffer(new uint8_t[kIcoDirectoryBytes]);
    if (inputStream.get()->read(dirBuffer.get(), kIcoDirectoryBytes) !=
            kIcoDirectoryBytes) {
        SkCodecPrintf("Error: unable to read ico directory header.\n");
        *result = kIncompleteInput;
        return nullptr;
    }

    // Process the directory header
    const uint16_t numImages = get_short(dirBuffer.get(), 4);
    if (0 == numImages) {
        SkCodecPrintf("Error: No images embedded in ico.\n");
        *result = kInvalidInput;
        return nullptr;
    }

    // This structure is used to represent the vital information about entries
    // in the directory header.  We will obtain this information for each
    // directory entry.
    struct Entry {
        uint32_t offset;
        uint32_t size;
    };
    SkAutoFree dirEntryBuffer(sk_malloc_flags(sizeof(Entry) * numImages,
                                              SK_MALLOC_TEMP));
    if (!dirEntryBuffer) {
        SkCodecPrintf("Error: OOM allocating ICO directory for %i images.\n",
                      numImages);
        *result = kInternalError;
        return nullptr;
    }
    auto* directoryEntries = reinterpret_cast<Entry*>(dirEntryBuffer.get());

    // Iterate over directory entries
    for (uint32_t i = 0; i < numImages; i++) {
        uint8_t entryBuffer[kIcoDirEntryBytes];
        if (inputStream->read(entryBuffer, kIcoDirEntryBytes) !=
                kIcoDirEntryBytes) {
            SkCodecPrintf("Error: Dir entries truncated in ico.\n");
            *result = kIncompleteInput;
            return nullptr;
        }

        // The directory entry contains information such as width, height,
        // bits per pixel, and number of colors in the color palette.  We will
        // ignore these fields since they are repeated in the header of the
        // embedded image.  In the event of an inconsistency, we would always
        // defer to the value in the embedded header anyway.

        // Specifies the size of the embedded image, including the header
        uint32_t size = get_int(entryBuffer, 8);

        // Specifies the offset of the embedded image from the start of file.
        // It does not indicate the start of the pixel data, but rather the
        // start of the embedded image header.
        uint32_t offset = get_int(entryBuffer, 12);

        // Save the vital fields
        directoryEntries[i].offset = offset;
        directoryEntries[i].size = size;
    }

    // Default Result, if no valid embedded codecs are found.
    *result = kInvalidInput;

    // It is "customary" that the embedded images will be stored in order of
    // increasing offset.  However, the specification does not indicate that
    // they must be stored in this order, so we will not trust that this is the
    // case.  Here we sort the embedded images by increasing offset.
    struct EntryLessThan {
        bool operator() (Entry a, Entry b) const {
            return a.offset < b.offset;
        }
    };
    EntryLessThan lessThan;
    SkTQSort(directoryEntries, &directoryEntries[numImages - 1], lessThan);

    // Now will construct a candidate codec for each of the embedded images
    uint32_t bytesRead = kIcoDirectoryBytes + numImages * kIcoDirEntryBytes;
    std::unique_ptr<SkTArray<std::unique_ptr<SkCodec>, true>> codecs(
            new (SkTArray<std::unique_ptr<SkCodec>, true>)(numImages));
    for (uint32_t i = 0; i < numImages; i++) {
        uint32_t offset = directoryEntries[i].offset;
        uint32_t size = directoryEntries[i].size;

        // Ensure that the offset is valid
        if (offset < bytesRead) {
            SkCodecPrintf("Warning: invalid ico offset.\n");
            continue;
        }

        // If we cannot skip, assume we have reached the end of the stream and
        // stop trying to make codecs
        if (inputStream.get()->skip(offset - bytesRead) != offset - bytesRead) {
            SkCodecPrintf("Warning: could not skip to ico offset.\n");
            break;
        }
        bytesRead = offset;

        // Create a new stream for the embedded codec
        SkAutoFree buffer(sk_malloc_flags(size, 0));
        if (!buffer) {
            SkCodecPrintf("Warning: OOM trying to create embedded stream.\n");
            break;
        }

        if (inputStream->read(buffer.get(), size) != size) {
            SkCodecPrintf("Warning: could not create embedded stream.\n");
            *result = kIncompleteInput;
            break;
        }

        sk_sp<SkData> data(SkData::MakeFromMalloc(buffer.release(), size));
        std::unique_ptr<SkMemoryStream> embeddedStream(new SkMemoryStream(data));
        bytesRead += size;

        // Check if the embedded codec is bmp or png and create the codec
        SkCodec* codec = nullptr;
        Result dummyResult;
        if (SkPngCodec::IsPng((const char*) data->bytes(), data->size())) {
            codec = SkPngCodec::NewFromStream(embeddedStream.release(), &dummyResult);
        } else {
            codec = SkBmpCodec::NewFromIco(embeddedStream.release(), &dummyResult);
        }

        // Save a valid codec
        if (nullptr != codec) {
            codecs->push_back().reset(codec);
        }
    }

    // Recognize if there are no valid codecs
    if (0 == codecs->count()) {
        SkCodecPrintf("Error: could not find any valid embedded ico codecs.\n");
        return nullptr;
    }

    // Use the largest codec as a "suggestion" for image info
    size_t maxSize = 0;
    int maxIndex = 0;
    for (int i = 0; i < codecs->count(); i++) {
        SkImageInfo info = codecs->operator[](i)->getInfo();
        size_t size = info.getSafeSize(info.minRowBytes());

        if (size > maxSize) {
            maxSize = size;
            maxIndex = i;
        }
    }
    int width = codecs->operator[](maxIndex)->getInfo().width();
    int height = codecs->operator[](maxIndex)->getInfo().height();
    SkEncodedInfo info = codecs->operator[](maxIndex)->getEncodedInfo();
    SkColorSpace* colorSpace = codecs->operator[](maxIndex)->getInfo().colorSpace();

    *result = kSuccess;
    // The original stream is no longer needed, because the embedded codecs own their
    // own streams.
    return new SkIcoCodec(width, height, info, codecs.release(), sk_ref_sp(colorSpace));
}
示例#19
0
bool SkBitmapRegionCodec::decodeRegion(SkBitmap* bitmap, SkBRDAllocator* allocator,
        const SkIRect& desiredSubset, int sampleSize, SkColorType prefColorType,
        bool requireUnpremul) {

    // Fix the input sampleSize if necessary.
    if (sampleSize < 1) {
        sampleSize = 1;
    }

    // The size of the output bitmap is determined by the size of the
    // requested subset, not by the size of the intersection of the subset
    // and the image dimensions.
    // If inputX is negative, we will need to place decoded pixels into the
    // output bitmap starting at a left offset.  Call this outX.
    // If outX is non-zero, subsetX must be zero.
    // If inputY is negative, we will need to place decoded pixels into the
    // output bitmap starting at a top offset.  Call this outY.
    // If outY is non-zero, subsetY must be zero.
    int outX;
    int outY;
    SkIRect subset = desiredSubset;
    SubsetType type = adjust_subset_rect(fCodec->getInfo().dimensions(), &subset, &outX, &outY);
    if (SubsetType::kOutside_SubsetType == type) {
        return false;
    }

    // Ask the codec for a scaled subset
    if (!fCodec->getSupportedSubset(&subset)) {
        SkCodecPrintf("Error: Could not get subset.\n");
        return false;
    }
    SkISize scaledSize = fCodec->getSampledSubsetDimensions(sampleSize, subset);

    // Create the image info for the decode
    SkColorType dstColorType = fCodec->computeOutputColorType(prefColorType);
    SkAlphaType dstAlphaType = fCodec->computeOutputAlphaType(requireUnpremul);
    SkImageInfo decodeInfo = fCodec->getInfo().makeWH(scaledSize.width(), scaledSize.height())
                                              .makeColorType(dstColorType)
                                              .makeAlphaType(dstAlphaType);

    // Construct a color table for the decode if necessary
    SkAutoTUnref<SkColorTable> colorTable(nullptr);
    int maxColors = 256;
    SkPMColor colors[256];
    if (kIndex_8_SkColorType == dstColorType) {
        colorTable.reset(new SkColorTable(colors, maxColors));
    }

    // Initialize the destination bitmap
    int scaledOutX = 0;
    int scaledOutY = 0;
    int scaledOutWidth = scaledSize.width();
    int scaledOutHeight = scaledSize.height();
    if (SubsetType::kPartiallyInside_SubsetType == type) {
        scaledOutX = outX / sampleSize;
        scaledOutY = outY / sampleSize;
        // We need to be safe here because getSupportedSubset() may have modified the subset.
        const int extraX = SkTMax(0, desiredSubset.width() - outX - subset.width());
        const int extraY = SkTMax(0, desiredSubset.height() - outY - subset.height());
        const int scaledExtraX = extraX / sampleSize;
        const int scaledExtraY = extraY / sampleSize;
        scaledOutWidth += scaledOutX + scaledExtraX;
        scaledOutHeight += scaledOutY + scaledExtraY;
    }
    SkImageInfo outInfo = decodeInfo.makeWH(scaledOutWidth, scaledOutHeight);
    if (kGray_8_SkColorType == dstColorType) {
        // The legacy implementations of BitmapFactory and BitmapRegionDecoder
        // used kAlpha8 for grayscale images (before kGray8 existed).  While
        // the codec recognizes kGray8, we need to decode into a kAlpha8
        // bitmap in order to avoid a behavior change.
        outInfo = outInfo.makeColorType(kAlpha_8_SkColorType).makeAlphaType(kPremul_SkAlphaType);
    }
    bitmap->setInfo(outInfo);
    if (!bitmap->tryAllocPixels(allocator, colorTable.get())) {
        SkCodecPrintf("Error: Could not allocate pixels.\n");
        return false;
    }

    // Zero the bitmap if the region is not completely within the image.
    // TODO (msarett): Can we make this faster by implementing it to only
    //                 zero parts of the image that we won't overwrite with
    //                 pixels?
    SkCodec::ZeroInitialized zeroInit = allocator ? allocator->zeroInit() :
            SkCodec::kNo_ZeroInitialized;
    if (SubsetType::kPartiallyInside_SubsetType == type &&
            SkCodec::kNo_ZeroInitialized == zeroInit) {
        void* pixels = bitmap->getPixels();
        size_t bytes = outInfo.getSafeSize(bitmap->rowBytes());
        memset(pixels, 0, bytes);
    }

    // Decode into the destination bitmap
    SkAndroidCodec::AndroidOptions options;
    options.fSampleSize = sampleSize;
    options.fSubset = &subset;
    options.fColorPtr = colors;
    options.fColorCount = &maxColors;
    options.fZeroInitialized = zeroInit;
    void* dst = bitmap->getAddr(scaledOutX, scaledOutY);

    SkCodec::Result result = fCodec->getAndroidPixels(decodeInfo, dst, bitmap->rowBytes(),
            &options);
    if (SkCodec::kSuccess != result && SkCodec::kIncompleteInput != result) {
        SkCodecPrintf("Error: Could not get pixels.\n");
        return false;
    }

    // Intialize the color table
    if (kIndex_8_SkColorType == dstColorType) {
        colorTable->dangerous_overwriteColors(colors, maxColors);
    }

    return true;
}