示例#1
0
    virtual void onDrawContent(SkCanvas* canvas) {
        SkRect srcR;
        srcR.set(fSrcPts[0], fSrcPts[1]);
        srcR = SkRect::MakeXYWH(fSrcPts[0].fX, fSrcPts[0].fY, 32, 32);
        srcR.offset(-srcR.width()/2, -srcR.height()/2);

        SkPaint paint;
        paint.setStyle(SkPaint::kStroke_Style);
        paint.setColor(SK_ColorYELLOW);

        SkBitmap bitmap;
        make_bitmap(&bitmap);

        canvas->translate(20, 20);

        canvas->drawBitmap(bitmap, 0, 0, &paint);
        canvas->drawRect(srcR, paint);

        for (int i = 0; i < 2; ++i) {
            paint.setFilterLevel(1 == i ? SkPaint::kLow_FilterLevel : SkPaint::kNone_FilterLevel);
            canvas->drawBitmapRectToRect(bitmap, &srcR, fDstR[i], &paint);
            canvas->drawRect(fDstR[i], paint);
        }

        this->bounce();
        this->inval(NULL);
    }
示例#2
0
    virtual void onDraw(SkCanvas* canvas) {
        SkBitmap bm;
        SkIRect center;
        make_bitmap(&bm, &center);

        // amount of bm that should not be stretched (unless we have to)
        const SkScalar fixed = SkIntToScalar(bm.width() - center.width());

        const SkTSize<SkScalar> size[] = {
            { fixed * 4 / 5, fixed * 4 / 5 },   // shrink in both axes
            { fixed * 4 / 5, fixed * 4 },       // shrink in X
            { fixed * 4,     fixed * 4 / 5 },   // shrink in Y
            { fixed * 4,     fixed * 4 }
        };

        canvas->drawBitmap(bm, SkIntToScalar(10), SkIntToScalar(10), NULL);

        SkScalar x = SkIntToScalar(100);
        SkScalar y = SkIntToScalar(100);

        SkPaint paint;
        paint.setFilterLevel(SkPaint::kLow_FilterLevel);

        for (int iy = 0; iy < 2; ++iy) {
            for (int ix = 0; ix < 2; ++ix) {
                int i = ix * 2 + iy;
                SkRect r = SkRect::MakeXYWH(x + ix * fixed, y + iy * fixed,
                                            size[i].width(), size[i].height());
                canvas->drawBitmapNine(bm, center, r, &paint);
            }
        }
    }
示例#3
0
    virtual void onDrawContent(SkCanvas* canvas) {
        canvas->translate(this->width()/2, this->height()/2);

        Sk3DView    view;
        view.rotateX(fRX);
        view.rotateY(fRY);
        view.applyToCanvas(canvas);

        SkPaint paint;
        if (fShaders.count() > 0) {
            bool frontFace = view.dotWithNormal(0, 0, SK_Scalar1) < 0;
            if (frontFace != fFrontFace) {
                fFrontFace = frontFace;
                fShaderIndex = (fShaderIndex + 1) % fShaders.count();
            }

            paint.setAntiAlias(true);
            paint.setShader(fShaders[fShaderIndex]);
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);
            SkRect r = { -150, -150, 150, 150 };
            canvas->drawRoundRect(r, 30, 30, paint);
        }

        fRY += SampleCode::GetAnimSecondsDelta() * 90;
        if (fRY >= SkIntToScalar(360)) {
            fRY = 0;
        }
        this->inval(NULL);
    }
    virtual void onDraw(SkCanvas* canvas) {
        SkMatrix m;
        m.reset();
        m.setRotate(33 * SK_Scalar1);
        m.postScale(3000 * SK_Scalar1, 3000 * SK_Scalar1);
        m.postTranslate(6000 * SK_Scalar1, -5000 * SK_Scalar1);
        canvas->concat(m);

        SkPaint paint;
        paint.setColor(SK_ColorRED);
        paint.setAntiAlias(true);

        bool success = m.invert(&m);
        SkASSERT(success);
        (void) success; // silence compiler :(

        SkPath path;

        SkPoint pt = {10 * SK_Scalar1, 10 * SK_Scalar1};
        SkScalar small = 1 / (500 * SK_Scalar1);

        m.mapPoints(&pt, 1);
        path.addCircle(pt.fX, pt.fY, small);
        canvas->drawPath(path, paint);

        pt.set(30 * SK_Scalar1, 10 * SK_Scalar1);
        m.mapPoints(&pt, 1);
        SkRect rect = {pt.fX - small, pt.fY - small,
                       pt.fX + small, pt.fY + small};
        canvas->drawRect(rect, paint);

        SkBitmap bmp;
        bmp.setConfig(SkBitmap::kARGB_8888_Config, 2, 2);
        bmp.allocPixels();
        bmp.lockPixels();
        uint32_t* pixels = reinterpret_cast<uint32_t*>(bmp.getPixels());
        pixels[0] = SkPackARGB32(0xFF, 0xFF, 0x00, 0x00);
        pixels[1] = SkPackARGB32(0xFF, 0x00, 0xFF, 0x00);
        pixels[2] = SkPackARGB32(0x80, 0x00, 0x00, 0x00);
        pixels[3] = SkPackARGB32(0xFF, 0x00, 0x00, 0xFF);
        bmp.unlockPixels();
        pt.set(30 * SK_Scalar1, 30 * SK_Scalar1);
        m.mapPoints(&pt, 1);
        SkShader* shader = SkShader::CreateBitmapShader(
                                            bmp,
                                            SkShader::kRepeat_TileMode,
                                            SkShader::kRepeat_TileMode);
        SkMatrix s;
        s.reset();
        s.setScale(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
        shader->setLocalMatrix(s);
        paint.setShader(shader)->unref();
        paint.setAntiAlias(false);
        paint.setFilterLevel(SkPaint::kLow_FilterLevel);
        rect.setLTRB(pt.fX - small, pt.fY - small,
                     pt.fX + small, pt.fY + small);
        canvas->drawRect(rect, paint);
    }
示例#5
0
    virtual void onDrawContent(SkCanvas* canvas) {
        SkIRect srcRect;
        SkRect dstRect;
        SkPaint paint;
        paint.setFilterLevel(SkPaint::kLow_FilterLevel);

        // Test that bitmap draws from malloc-backed bitmaps respect
        // the constrained texture domain.
        srcRect.setXYWH(1, 1, 3, 3);
        dstRect.setXYWH(5.0f, 5.0f, 305.0f, 305.0f);
        canvas->drawBitmapRect(fBM, &srcRect, dstRect, &paint);

        // Test that bitmap draws across separate devices also respect
        // the constrainted texture domain.
        // Note:  GPU-backed bitmaps follow a different rendering path
        // when copying from one GPU device to another.
        SkAutoTUnref<SkBaseDevice> secondDevice(canvas->createCompatibleDevice(
                SkBitmap::kARGB_8888_Config, 5, 5, true));
        SkCanvas secondCanvas(secondDevice.get());

        srcRect.setXYWH(1, 1, 3, 3);
        dstRect.setXYWH(1.0f, 1.0f, 3.0f, 3.0f);
        secondCanvas.drawBitmapRect(fBM, &srcRect, dstRect, &paint);

        SkBitmap deviceBitmap = secondDevice->accessBitmap(false);

        srcRect.setXYWH(1, 1, 3, 3);
        dstRect.setXYWH(405.0f, 5.0f, 305.0f, 305.0f);
        canvas->drawBitmapRect(deviceBitmap, &srcRect, dstRect, &paint);

        // Test that bitmap blurring using a subrect
        // renders correctly
        srcRect.setXYWH(1, 1, 3, 3);
        dstRect.setXYWH(5.0f, 405.0f, 305.0f, 305.0f);
        SkMaskFilter* mf = SkBlurMaskFilter::Create(
            SkBlurMaskFilter::kNormal_BlurStyle,
            SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(5)),
            SkBlurMaskFilter::kHighQuality_BlurFlag |
            SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
        paint.setMaskFilter(mf)->unref();
        canvas->drawBitmapRect(deviceBitmap, &srcRect, dstRect, &paint);

        // Blur and a rotation + NULL src rect
        // This should not trigger the texture domain code
        // but it will test a code path in SkGpuDevice::drawBitmap
        // that handles blurs with rects transformed to non-
        // orthogonal rects. It also tests the NULL src rect handling
    mf = SkBlurMaskFilter::Create(
            SkBlurMaskFilter::kNormal_BlurStyle,
            SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(5)),
            SkBlurMaskFilter::kHighQuality_BlurFlag);
        paint.setMaskFilter(mf)->unref();

        dstRect.setXYWH(-150.0f, -150.0f, 300.0f, 300.0f);
        canvas->translate(550, 550);
        canvas->rotate(45);
        canvas->drawBitmapRect(fBM, NULL, dstRect, &paint);
    }
示例#6
0
static void draw_row(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& mat, SkScalar dx) {
    SkPaint paint;

    SkAutoCanvasRestore acr(canvas, true);

    canvas->drawBitmapMatrix(bm, mat, &paint);

    paint.setFilterLevel(SkPaint::kLow_FilterLevel);
    canvas->translate(dx, 0);
    canvas->drawBitmapMatrix(bm, mat, &paint);

    paint.setFilterLevel(SkPaint::kMedium_FilterLevel);
    canvas->translate(dx, 0);
    canvas->drawBitmapMatrix(bm, mat, &paint);

    paint.setFilterLevel(SkPaint::kHigh_FilterLevel);
    canvas->translate(dx, 0);
    canvas->drawBitmapMatrix(bm, mat, &paint);
}
示例#7
0
void Panel::OnDraw(SkCanvas* canvas, const SkRect& clip_rect) {
    SkPaint paint;
    paint.setFilterLevel(SkPaint::kMedium_FilterLevel);
    SkRect rect = SkRect::MakeXYWH(
        SkIntToScalar(0), SkIntToScalar(0),
        SkIntToScalar(Width()), SkIntToScalar(Height()));

    auto bitmaps = Bitmap();
    !bitmaps.empty() ? GetRenderTactics()->Draw(canvas, bitmaps[0], rect, paint) :
        canvas->clear(SK_AlphaTRANSPARENT);
}
示例#8
0
    virtual void onDrawContent(SkCanvas* canvas) {
        SkPaint paint;
        paint.setStyle(SkPaint::kStroke_Style);
        paint.setColor(SK_ColorYELLOW);

        for (int i = 0; i < 2; ++i) {
            paint.setFilterLevel(1 == i ? SkPaint::kLow_FilterLevel : SkPaint::kNone_FilterLevel);
            canvas->drawBitmapRectToRect(fBitmap, &fSrcR, fDstR[i], &paint);
            canvas->drawRect(fDstR[i], paint);
        }

        this->bounceMe();
        this->inval(NULL);
    }
bool SkDownSampleImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& src,
                                            const Context&,
                                            SkBitmap* result, SkIPoint*) const {
    SkScalar scale = fScale;
    if (scale > SK_Scalar1 || scale <= 0) {
        return false;
    }

    int dstW = SkScalarRoundToInt(src.width() * scale);
    int dstH = SkScalarRoundToInt(src.height() * scale);
    if (dstW < 1) {
        dstW = 1;
    }
    if (dstH < 1) {
        dstH = 1;
    }

    SkBitmap tmp;

    // downsample
    {
        SkBaseDevice* dev = proxy->createDevice(dstW, dstH);
        if (NULL == dev) {
            return false;
        }
        OwnDeviceCanvas canvas(dev);
        SkPaint paint;

        paint.setFilterLevel(SkPaint::kLow_FilterLevel);
        canvas.scale(scale, scale);
        canvas.drawBitmap(src, 0, 0, &paint);
        tmp = dev->accessBitmap(false);
    }

    // upscale
    {
        SkBaseDevice* dev = proxy->createDevice(src.width(), src.height());
        if (NULL == dev) {
            return false;
        }
        OwnDeviceCanvas canvas(dev);

        SkRect r = SkRect::MakeWH(SkIntToScalar(src.width()),
                                  SkIntToScalar(src.height()));
        canvas.drawBitmapRect(tmp, NULL, r, NULL);
        *result = dev->accessBitmap(false);
    }
    return true;
}
示例#10
0
    // Draw ~1/4 of the large bitmap
    void drawCase3(SkCanvas* canvas, int transX, int transY,
                   SkCanvas::DrawBitmapRectFlags flags, SkPaint::FilterLevel filter) {
        SkRect src = SkRect::MakeXYWH(2, 2,
                                      SkIntToScalar(fBitmapBig.width()/2-2),
                                      SkIntToScalar(fBitmapBig.height()/2-2));
        SkRect dst = SkRect::MakeXYWH(0, 0, SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));

        SkPaint paint;
        paint.setFilterLevel(filter);

        canvas->save();
        canvas->translate(SkIntToScalar(transX), SkIntToScalar(transY));
        canvas->drawBitmapRectToRect(fBitmapBig, &src, dst, &paint, flags);
        canvas->restore();
    }
示例#11
0
    // Draw only the center of the small bitmap
    void drawCase1(SkCanvas* canvas, int transX, int transY,
                   SkCanvas::DrawBitmapRectFlags flags, SkPaint::FilterLevel filter) {
        SkRect src = SkRect::MakeXYWH(2, 2,
                                      SkIntToScalar(kSmallTextureSize-4),
                                      SkIntToScalar(kSmallTextureSize-4));
        SkRect dst = SkRect::MakeXYWH(0, 0, SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));

        SkPaint paint;
        paint.setFilterLevel(filter);

        canvas->save();
        canvas->translate(SkIntToScalar(transX), SkIntToScalar(transY));
        canvas->drawBitmapRectToRect(fBitmapSmall, &src, dst, &paint, flags);
        canvas->restore();
    }
示例#12
0
    virtual void onDrawContent(SkCanvas* canvas) {
        canvas->translate(SkIntToScalar(10), SkIntToScalar(50));

        const SkScalar W = SkIntToScalar(fBitmaps[0].width() + 1);
        const SkScalar H = SkIntToScalar(fBitmaps[0].height() + 1);
        SkPaint paint;

        const SkScalar scale = 0.897917f;
        canvas->scale(SK_Scalar1, scale);

        for (int k = 0; k < 2; k++) {
            paint.setFilterLevel(k == 1 ? SkPaint::kLow_FilterLevel : SkPaint::kNone_FilterLevel);
            for (int j = 0; j < 2; j++) {
                paint.setDither(j == 1);
                for (int i = 0; i < fBitmapCount; i++) {
                    SkScalar x = (k * fBitmapCount + j) * W;
                    SkScalar y = i * H;
                    x = SkScalarRoundToScalar(x);
                    y = SkScalarRoundToScalar(y);
                    canvas->drawBitmap(fBitmaps[i], x, y, &paint);
                    if (i == 0) {
                        SkPaint p;
                        p.setAntiAlias(true);
                        p.setTextAlign(SkPaint::kCenter_Align);
                        p.setTextSize(SkIntToScalar(18));
                        SkString s("dither=");
                        s.appendS32(paint.isDither());
                        s.append(" filter=");
                        s.appendS32(paint.getFilterLevel() != SkPaint::kNone_FilterLevel);
                        canvas->drawText(s.c_str(), s.size(), x + W/2,
                                         y - p.getTextSize(), p);
                    }
                    if (k+j == 2) {
                        SkPaint p;
                        p.setAntiAlias(true);
                        p.setTextSize(SkIntToScalar(18));
                        SkString s;
                        s.append(" depth=");
                        s.appendS32(fBitmaps[i].colorType() == kRGB_565_SkColorType ? 16 : 32);
                        canvas->drawText(s.c_str(), s.size(), x + W + SkIntToScalar(4),
                                         y + H/2, p);
                    }
                }
            }
        }
    }
示例#13
0
    // Draw the center of the small bitmap with a mask filter
    void drawCase4(SkCanvas* canvas, int transX, int transY,
                   SkCanvas::DrawBitmapRectFlags flags, SkPaint::FilterLevel filter) {
        SkRect src = SkRect::MakeXYWH(2, 2,
                                      SkIntToScalar(kSmallTextureSize-4),
                                      SkIntToScalar(kSmallTextureSize-4));
        SkRect dst = SkRect::MakeXYWH(0, 0, SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));

        SkPaint paint;
        paint.setFilterLevel(filter);
        SkMaskFilter* mf = SkBlurMaskFilter::Create(kNormal_SkBlurStyle,
                           SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(3)));
        paint.setMaskFilter(mf)->unref();

        canvas->save();
        canvas->translate(SkIntToScalar(transX), SkIntToScalar(transY));
        canvas->drawBitmapRectToRect(fBitmapSmall, &src, dst, &paint, flags);
        canvas->restore();
    }
示例#14
0
static void mesh_slide(SkCanvas* canvas) {
    Rec fRecs[3];
    SkIPoint    size;

    SkShader* fShader0 = make_shader0(&size);
    SkShader* fShader1 = make_shader1(size);

    SkAutoUnref aur0(fShader0);
    SkAutoUnref aur1(fShader1);

    make_strip(&fRecs[0], size.fX, size.fY);
    make_fan(&fRecs[1], size.fX, size.fY);
    make_tris(&fRecs[2]);

    SkPaint paint;
    paint.setDither(true);
    paint.setFilterLevel(SkPaint::kLow_FilterLevel);

    for (size_t i = 0; i < SK_ARRAY_COUNT(fRecs); i++) {
        canvas->save();

        paint.setShader(NULL);
        canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount,
                             fRecs[i].fVerts, fRecs[i].fTexs,
                             NULL, NULL, NULL, 0, paint);

        canvas->translate(SkIntToScalar(210), 0);

        paint.setShader(fShader0);
        canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount,
                             fRecs[i].fVerts, fRecs[i].fTexs,
                             NULL, NULL, NULL, 0, paint);

        canvas->translate(SkIntToScalar(210), 0);

        paint.setShader(fShader1);
        canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount,
                             fRecs[i].fVerts, fRecs[i].fTexs,
                             NULL, NULL, NULL, 0, paint);
        canvas->restore();

        canvas->translate(0, SkIntToScalar(250));
    }
}
bool SkMatrixImageFilter::onFilterImage(Proxy* proxy,
                                        const SkBitmap& source,
                                        const Context& ctx,
                                        SkBitmap* result,
                                        SkIPoint* offset) const {
    SkBitmap src = source;
    SkIPoint srcOffset = SkIPoint::Make(0, 0);
    if (getInput(0) && !getInput(0)->filterImage(proxy, source, ctx, &src, &srcOffset)) {
        return false;
    }

    SkRect dstRect;
    SkIRect srcBounds, dstBounds;
    src.getBounds(&srcBounds);
    srcBounds.offset(srcOffset);
    SkRect srcRect = SkRect::Make(srcBounds);
    SkMatrix matrix;
    if (!ctx.ctm().invert(&matrix)) {
        return false;
    }
    matrix.postConcat(fTransform);
    matrix.postConcat(ctx.ctm());
    matrix.mapRect(&dstRect, srcRect);
    dstRect.roundOut(&dstBounds);

    SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(dstBounds.width(), dstBounds.height()));
    if (NULL == device.get()) {
        return false;
    }

    SkCanvas canvas(device.get());
    canvas.translate(-SkIntToScalar(dstBounds.x()), -SkIntToScalar(dstBounds.y()));
    canvas.concat(matrix);
    SkPaint paint;

    paint.setXfermodeMode(SkXfermode::kSrc_Mode);
    paint.setFilterLevel(fFilterLevel);
    canvas.drawBitmap(src, srcRect.x(), srcRect.y(), &paint);

    *result = device.get()->accessBitmap(false);
    offset->fX = dstBounds.fLeft;
    offset->fY = dstBounds.fTop;
    return true;
}
示例#16
0
static void
Transform(DataSourceSurface* aDest,
          DataSourceSurface* aSource,
          const gfx3DMatrix& aTransform,
          const Point& aDestOffset)
{
  if (aTransform.IsSingular()) {
    return;
  }

  IntSize destSize = aDest->GetSize();
  SkImageInfo destInfo = SkImageInfo::Make(destSize.width,
                                           destSize.height,
                                           kBGRA_8888_SkColorType,
                                           kPremul_SkAlphaType);
  SkBitmap destBitmap;
  destBitmap.setInfo(destInfo, aDest->Stride());
  destBitmap.setPixels((uint32_t*)aDest->GetData());
  SkCanvas destCanvas(destBitmap);

  IntSize srcSize = aSource->GetSize();
  SkImageInfo srcInfo = SkImageInfo::Make(srcSize.width,
                                          srcSize.height,
                                          kBGRA_8888_SkColorType,
                                          kPremul_SkAlphaType);
  SkBitmap src;
  src.setInfo(srcInfo, aSource->Stride());
  src.setPixels((uint32_t*)aSource->GetData());

  gfx3DMatrix transform = aTransform;
  transform.TranslatePost(Point3D(-aDestOffset.x, -aDestOffset.y, 0));
  destCanvas.setMatrix(Matrix3DToSkia(transform));

  SkPaint paint;
  paint.setXfermodeMode(SkXfermode::kSrc_Mode);
  paint.setAntiAlias(true);
  paint.setFilterLevel(SkPaint::kLow_FilterLevel);
  SkRect destRect = SkRect::MakeXYWH(0, 0, srcSize.width, srcSize.height);
  destCanvas.drawBitmapRectToRect(src, nullptr, destRect, &paint);
}
示例#17
0
static void
SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern, TempBitmap& aTmpBitmap,
                Float aAlpha = 1.0)
{
  switch (aPattern.GetType()) {
    case PatternType::COLOR: {
      Color color = static_cast<const ColorPattern&>(aPattern).mColor;
      aPaint.setColor(ColorToSkColor(color, aAlpha));
      break;
    }
    case PatternType::LINEAR_GRADIENT: {
      const LinearGradientPattern& pat = static_cast<const LinearGradientPattern&>(aPattern);
      GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
      SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode);

      if (stops->mCount >= 2) {
        SkPoint points[2];
        points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x), SkFloatToScalar(pat.mBegin.y));
        points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x), SkFloatToScalar(pat.mEnd.y));

        SkShader* shader = SkGradientShader::CreateLinear(points, 
                                                          &stops->mColors.front(), 
                                                          &stops->mPositions.front(), 
                                                          stops->mCount, 
                                                          mode);

        if (shader) {
            SkMatrix mat;
            GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
            shader->setLocalMatrix(mat);
            SkSafeUnref(aPaint.setShader(shader));
        }

      } else {
        aPaint.setColor(SkColorSetARGB(0, 0, 0, 0));
      }
      break;
    }
    case PatternType::RADIAL_GRADIENT: {
      const RadialGradientPattern& pat = static_cast<const RadialGradientPattern&>(aPattern);
      GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
      SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode);

      if (stops->mCount >= 2) {
        SkPoint points[2];
        points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x), SkFloatToScalar(pat.mCenter1.y));
        points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x), SkFloatToScalar(pat.mCenter2.y));

        SkShader* shader = SkGradientShader::CreateTwoPointConical(points[0], 
                                                                   SkFloatToScalar(pat.mRadius1),
                                                                   points[1], 
                                                                   SkFloatToScalar(pat.mRadius2),
                                                                   &stops->mColors.front(), 
                                                                   &stops->mPositions.front(), 
                                                                   stops->mCount, 
                                                                   mode);
        if (shader) {
            SkMatrix mat;
            GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
            shader->setLocalMatrix(mat);
            SkSafeUnref(aPaint.setShader(shader));
        }

      } else {
        aPaint.setColor(SkColorSetARGB(0, 0, 0, 0));
      }
      break;
    }
    case PatternType::SURFACE: {
      const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
      aTmpBitmap = GetBitmapForSurface(pat.mSurface);
      const SkBitmap& bitmap = aTmpBitmap.mBitmap;

      SkShader::TileMode mode = ExtendModeToTileMode(pat.mExtendMode);
      SkShader* shader = SkShader::CreateBitmapShader(bitmap, mode, mode);
      SkMatrix mat;
      GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
      shader->setLocalMatrix(mat);
      SkSafeUnref(aPaint.setShader(shader));
      if (pat.mFilter == Filter::POINT) {
        aPaint.setFilterLevel(SkPaint::kNone_FilterLevel);
      }
      break;
    }
  }
}
void NativeImageSkia::drawPattern(
    GraphicsContext* context,
    const FloatRect& floatSrcRect,
    const FloatSize& scale,
    const FloatPoint& phase,
    CompositeOperator compositeOp,
    const FloatRect& destRect,
    blink::WebBlendMode blendMode,
    const IntSize& repeatSpacing) const
{
    FloatRect normSrcRect = floatSrcRect;
    normSrcRect.intersect(FloatRect(0, 0, bitmap().width(), bitmap().height()));
    if (destRect.isEmpty() || normSrcRect.isEmpty())
        return; // nothing to draw

    SkMatrix totalMatrix = context->getTotalMatrix();
    SkScalar ctmScaleX = totalMatrix.getScaleX();
    SkScalar ctmScaleY = totalMatrix.getScaleY();
    totalMatrix.preScale(scale.width(), scale.height());

    // Figure out what size the bitmap will be in the destination. The
    // destination rect is the bounds of the pattern, we need to use the
    // matrix to see how big it will be.
    SkRect destRectTarget;
    totalMatrix.mapRect(&destRectTarget, normSrcRect);

    float destBitmapWidth = SkScalarToFloat(destRectTarget.width());
    float destBitmapHeight = SkScalarToFloat(destRectTarget.height());

    // Compute the resampling mode.
    ResamplingMode resampling;
    if (context->isAccelerated() || context->printing())
        resampling = LinearResampling;
    else
        resampling = computeResamplingMode(totalMatrix, normSrcRect.width(), normSrcRect.height(), destBitmapWidth, destBitmapHeight);
    resampling = limitResamplingMode(context, resampling);

    SkMatrix shaderTransform;
    RefPtr<SkShader> shader;

    bool isLazyDecoded = DeferredImageDecoder::isLazyDecoded(bitmap());
    // Bicubic filter is only applied to defer-decoded images, see
    // NativeImageSkia::draw for details.
    bool useBicubicFilter = resampling == AwesomeResampling && isLazyDecoded;

    if (resampling == AwesomeResampling && !useBicubicFilter) {
        // Do nice resampling.
        float scaleX = destBitmapWidth / normSrcRect.width();
        float scaleY = destBitmapHeight / normSrcRect.height();
        SkRect scaledSrcRect;

        // The image fragment generated here is not exactly what is
        // requested. The scale factor used is approximated and image
        // fragment is slightly larger to align to integer
        // boundaries.
        SkBitmap resampled = extractScaledImageFragment(normSrcRect, scaleX, scaleY, &scaledSrcRect);
        if (repeatSpacing.isZero()) {
            shader = adoptRef(SkShader::CreateBitmapShader(resampled, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode));
        } else {
            shader = adoptRef(SkShader::CreateBitmapShader(
                createBitmapWithSpace(resampled, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY),
                SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode));
        }

        // Since we just resized the bitmap, we need to remove the scale
        // applied to the pixels in the bitmap shader. This means we need
        // CTM * shaderTransform to have identity scale. Since we
        // can't modify CTM (or the rectangle will be drawn in the wrong
        // place), we must set shaderTransform's scale to the inverse of
        // CTM scale.
        shaderTransform.setScale(ctmScaleX ? 1 / ctmScaleX : 1, ctmScaleY ? 1 / ctmScaleY : 1);
    } else {
        // No need to resample before drawing.
        SkBitmap srcSubset;
        bitmap().extractSubset(&srcSubset, enclosingIntRect(normSrcRect));
        if (repeatSpacing.isZero()) {
            shader = adoptRef(SkShader::CreateBitmapShader(srcSubset, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode));
        } else {
            shader = adoptRef(SkShader::CreateBitmapShader(
                createBitmapWithSpace(srcSubset, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY),
                SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode));
        }

        // Because no resizing occurred, the shader transform should be
        // set to the pattern's transform, which just includes scale.
        shaderTransform.setScale(scale.width(), scale.height());
    }

    // We also need to translate it such that the origin of the pattern is the
    // origin of the destination rect, which is what WebKit expects. Skia uses
    // the coordinate system origin as the base for the pattern. If WebKit wants
    // a shifted image, it will shift it from there using the shaderTransform.
    float adjustedX = phase.x() + normSrcRect.x() * scale.width();
    float adjustedY = phase.y() + normSrcRect.y() * scale.height();
    shaderTransform.postTranslate(SkFloatToScalar(adjustedX), SkFloatToScalar(adjustedY));
    shader->setLocalMatrix(shaderTransform);

    SkPaint paint;
    paint.setShader(shader.get());
    paint.setXfermode(WebCoreCompositeToSkiaComposite(compositeOp, blendMode).get());
    paint.setColorFilter(context->colorFilter());

    paint.setFilterBitmap(resampling == LinearResampling);
    if (useBicubicFilter)
        paint.setFilterLevel(SkPaint::kHigh_FilterLevel);
    if (isLazyDecoded)
        PlatformInstrumentation::didDrawLazyPixelRef(bitmap().getGenerationID());

    context->drawRect(destRect, paint);
}
示例#19
0
    virtual void onDraw(SkCanvas* canvas) {
        static const int kBmpSize = 2048;
        if (fLargeBitmap.isNull()) {
            makebm(&fLargeBitmap, kBmpSize, kBmpSize);
        }
        SkRect dstRect = { 0, 0, SkIntToScalar(64), SkIntToScalar(64)};
        static const int kMaxSrcRectSize = 1 << (SkNextLog2(kBmpSize) + 2);

        static const int kPadX = 30;
        static const int kPadY = 40;
        SkPaint paint;
        paint.setAlpha(0x20);
        canvas->drawBitmapRect(fLargeBitmap, NULL,
                               SkRect::MakeWH(gSize * SK_Scalar1,
                                              gSize * SK_Scalar1),
                               &paint);
        canvas->translate(SK_Scalar1 * kPadX / 2,
                          SK_Scalar1 * kPadY / 2);
        SkPaint blackPaint;
        SkScalar titleHeight = SK_Scalar1 * 24;
        blackPaint.setColor(SK_ColorBLACK);
        blackPaint.setTextSize(titleHeight);
        blackPaint.setAntiAlias(true);
        SkString title;
        title.printf("Bitmap size: %d x %d", kBmpSize, kBmpSize);
        canvas->drawText(title.c_str(), title.size(), 0,
                         titleHeight, blackPaint);

        canvas->translate(0, SK_Scalar1 * kPadY / 2  + titleHeight);
        int rowCount = 0;
        canvas->save();
        for (int w = 1; w <= kMaxSrcRectSize; w *= 4) {
            for (int h = 1; h <= kMaxSrcRectSize; h *= 4) {

                SkIRect srcRect = SkIRect::MakeXYWH((kBmpSize - w) / 2,
                                                    (kBmpSize - h) / 2,
                                                    w, h);
                canvas->drawBitmapRect(fLargeBitmap, &srcRect, dstRect);

                SkString label;
                label.appendf("%d x %d", w, h);
                blackPaint.setAntiAlias(true);
                blackPaint.setStyle(SkPaint::kFill_Style);
                blackPaint.setTextSize(SK_Scalar1 * 10);
                SkScalar baseline = dstRect.height() +
                                    blackPaint.getTextSize() + SK_Scalar1 * 3;
                canvas->drawText(label.c_str(), label.size(),
                                    0, baseline,
                                    blackPaint);
                blackPaint.setStyle(SkPaint::kStroke_Style);
                blackPaint.setStrokeWidth(SK_Scalar1);
                blackPaint.setAntiAlias(false);
                canvas->drawRect(dstRect, blackPaint);

                canvas->translate(dstRect.width() + SK_Scalar1 * kPadX, 0);
                ++rowCount;
                if ((dstRect.width() + kPadX) * rowCount > gSize) {
                    canvas->restore();
                    canvas->translate(0, dstRect.height() + SK_Scalar1 * kPadY);
                    canvas->save();
                    rowCount = 0;
                }
            }
        }

        {
            // test the following code path:
            // SkGpuDevice::drawPath() -> SkGpuDevice::drawWithMaskFilter()
            SkIRect srcRect;
            SkPaint paint;
            SkBitmap bm;

            bm = make_chessbm(5, 5);
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);

            srcRect.setXYWH(1, 1, 3, 3);
            SkMaskFilter* mf = SkBlurMaskFilter::Create(
                kNormal_SkBlurStyle,
                SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(5)),
                SkBlurMaskFilter::kHighQuality_BlurFlag |
                SkBlurMaskFilter::kIgnoreTransform_BlurFlag);
            paint.setMaskFilter(mf)->unref();
            canvas->drawBitmapRect(bm, &srcRect, dstRect, &paint);
        }
    }
void RenderSkinMediaButton::Draw(SkCanvas* canvas, const IntRect& r,
                                 MediaButton buttonType, bool translucent,
                                 bool drawBackground, const IntRect& thumb)//4.2 Merge
{
    if (!gDecoded) {
        Decode();
    }

    if (!canvas)
        return;

    // If we failed to decode, do nothing.  This way the browser still works,
    // and webkit will still draw the label and layout space for us.
    if (gDecodingFailed)
        return;

    bool drawsNinePatch = false;
    bool drawsImage = true;

    int ninePatchIndex = 0;
    int imageIndex = 0;

    SkRect bounds(r);
    SkScalar imageMargin = 8;
    SkPaint paint;

    int alpha = 255;
    if (translucent)
        alpha = 190;

    SkColor backgroundColor = SkColorSetARGB(alpha, 34, 34, 34);
    SkColor trackBackgroundColor = SkColorSetARGB(255, 100, 100, 100);
    paint.setColor(backgroundColor);
//Android KITKAT Merge  - START
//    paint.setFlags(SkPaint::kFilterBitmap_Flag);
    //P140210-04273 : 
    // In D2 Device if we pass kMedium_FilterLevel image gets corrupted while drawing the image into the canvas. So loading icons was corrupting
    // kLow_FilterLevel works for other kitkat devices.
    //WAS paint.setFilterLevel(SkPaint::kMedium_FilterLevel);
    paint.setFilterLevel(SkPaint::kLow_FilterLevel);	
//Android KITKAT Merge  - END


    switch (buttonType) {
    case PAUSE:
    case PLAY:
    case MUTE:
    case REWIND:
    case FORWARD:
    case FULLSCREEN:
    {
         imageIndex = buttonType + 1;
         paint.setColor(backgroundColor);
         break;
    }
    case SPINNER_OUTER:
    case SPINNER_INNER:
    case VIDEO:
    {
         imageIndex = buttonType + 1;
         break;
    }
    case BACKGROUND_SLIDER:
    {
         drawsImage = false;
         break;
    }
    case SLIDER_TRACK:
    {
         drawsNinePatch = true;
         drawsImage = false;
         ninePatchIndex = buttonType + 1;
         break;
    }
    case SLIDER_THUMB:
    {
         imageMargin = 0;
         imageIndex = buttonType + 1;
         break;
    }
    default:
         return;
    }

    if (drawBackground) {
        canvas->drawRect(r, paint);
    }

    if (drawsNinePatch) {
        const PatchData& pd = gFiles[ninePatchIndex];
        int marginValue = pd.margin + pd.outset;

        SkIRect margin;
        margin.set(marginValue, marginValue, marginValue, marginValue);
        if (buttonType == SLIDER_TRACK) {
            // Cut the height in half (with some extra slop determined by trial
            // and error to get the placement just right.
            SkScalar quarterHeight = SkScalarHalf(SkScalarHalf(bounds.height()));
            bounds.fTop += quarterHeight + SkScalarHalf(3);
            bounds.fBottom += -quarterHeight + SK_ScalarHalf;
            if (!thumb.isEmpty()) {//4.2 Merge
                // Inset the track by half the width of the thumb, so the track
                // does not appear to go beyond the space where the thumb can
                // be.
                SkScalar thumbHalfWidth = SkIntToScalar(thumb.width()/2);
                bounds.fLeft += thumbHalfWidth;
                bounds.fRight -= thumbHalfWidth;
                if (thumb.x() > 0) {
                    // The video is past the starting point.  Show the area to
                    // left of the thumb as having been played.
                    SkScalar alreadyPlayed = SkIntToScalar(thumb.center().x() + r.x());
                    SkRect playedRect(bounds);
                    playedRect.fRight = alreadyPlayed;
                    SkNinePatch::DrawNine(canvas, playedRect, gButton[0], margin);
                    bounds.fLeft = alreadyPlayed;
                }

            }
        }
        SkNinePatch::DrawNine(canvas, bounds, gButton[ninePatchIndex], margin);
    }

    if (drawsImage) {
        SkScalar SIZE = gButton[imageIndex].width();
        SkScalar width = r.width();
        SkScalar scale = SkScalarDiv(width - 2*imageMargin, SIZE);
        int saveScaleCount = canvas->save();
        canvas->translate(bounds.fLeft + imageMargin, bounds.fTop + imageMargin);
        canvas->scale(scale, scale);
        canvas->drawBitmap(gButton[imageIndex], 0, 0, &paint);
        canvas->restoreToCount(saveScaleCount);
    }
}
void NativeImageSkia::draw(GraphicsContext* context, const SkRect& srcRect, const SkRect& destRect, PassRefPtr<SkXfermode> compOp) const
{
    TRACE_EVENT0("skia", "NativeImageSkia::draw");
    SkPaint paint;
    paint.setXfermode(compOp.get());
    paint.setColorFilter(context->colorFilter());
    paint.setAlpha(context->getNormalizedAlpha());
    paint.setLooper(context->drawLooper());
    // only antialias if we're rotated or skewed
    paint.setAntiAlias(hasNon90rotation(context));

    ResamplingMode resampling;
    if (context->isAccelerated()) {
        resampling = LinearResampling;
    } else if (context->printing()) {
        resampling = NoResampling;
    } else {
        // Take into account scale applied to the canvas when computing sampling mode (e.g. CSS scale or page scale).
        SkRect destRectTarget = destRect;
        SkMatrix totalMatrix = context->getTotalMatrix();
        if (!(totalMatrix.getType() & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)))
            totalMatrix.mapRect(&destRectTarget, destRect);

        resampling = computeResamplingMode(totalMatrix,
            SkScalarToFloat(srcRect.width()), SkScalarToFloat(srcRect.height()),
            SkScalarToFloat(destRectTarget.width()), SkScalarToFloat(destRectTarget.height()));
    }

    if (resampling == NoResampling) {
        // FIXME: This is to not break tests (it results in the filter bitmap flag
        // being set to true). We need to decide if we respect NoResampling
        // being returned from computeResamplingMode.
        resampling = LinearResampling;
    }
    resampling = limitResamplingMode(context, resampling);
    paint.setFilterBitmap(resampling == LinearResampling);

    bool isLazyDecoded = DeferredImageDecoder::isLazyDecoded(bitmap());
    // FIXME: Bicubic filtering in Skia is only applied to defer-decoded images
    // as an experiment. Once this filtering code path becomes stable we should
    // turn this on for all cases, including non-defer-decoded images.
    bool useBicubicFilter = resampling == AwesomeResampling && isLazyDecoded;

    if (useBicubicFilter)
        paint.setFilterLevel(SkPaint::kHigh_FilterLevel);

    if (resampling == AwesomeResampling && !useBicubicFilter) {
        // Resample the image and then draw the result to canvas with bilinear
        // filtering.
        drawResampledBitmap(context, paint, srcRect, destRect);
    } else {
        // We want to filter it if we decided to do interpolation above, or if
        // there is something interesting going on with the matrix (like a rotation).
        // Note: for serialization, we will want to subset the bitmap first so we
        // don't send extra pixels.
        context->drawBitmapRect(bitmap(), &srcRect, destRect, &paint);
    }
    if (isLazyDecoded)
        PlatformInstrumentation::didDrawLazyPixelRef(bitmap().getGenerationID());
    context->didDrawRect(destRect, paint, &bitmap());
}
示例#22
0
void SkScalerContext_FreeType_Base::generateGlyphImage(FT_Face face, const SkGlyph& glyph) {
    const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
    const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);

    switch ( face->glyph->format ) {
        case FT_GLYPH_FORMAT_OUTLINE: {
            FT_Outline* outline = &face->glyph->outline;
            FT_BBox     bbox;
            FT_Bitmap   target;

            if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
                !(face->style_flags & FT_STYLE_FLAG_BOLD)) {
                emboldenOutline(face, outline);
            }

            int dx = 0, dy = 0;
            if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
                dx = SkFixedToFDot6(glyph.getSubXFixed());
                dy = SkFixedToFDot6(glyph.getSubYFixed());
                // negate dy since freetype-y-goes-up and skia-y-goes-down
                dy = -dy;
            }
            FT_Outline_Get_CBox(outline, &bbox);
            /*
                what we really want to do for subpixel is
                    offset(dx, dy)
                    compute_bounds
                    offset(bbox & !63)
                but that is two calls to offset, so we do the following, which
                achieves the same thing with only one offset call.
            */
            FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63),
                                          dy - ((bbox.yMin + dy) & ~63));

            if (SkMask::kLCD16_Format == glyph.fMaskFormat) {
                FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD);
                SkMask mask;
                glyph.toMask(&mask);
                if (fPreBlend.isApplicable()) {
                    copyFT2LCD16<true>(face->glyph->bitmap, mask, doBGR,
                                       fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                } else {
                    copyFT2LCD16<false>(face->glyph->bitmap, mask, doBGR,
                                        fPreBlend.fR, fPreBlend.fG, fPreBlend.fB);
                }
            } else {
                target.width = glyph.fWidth;
                target.rows = glyph.fHeight;
                target.pitch = glyph.rowBytes();
                target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage);
                target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat);
                target.num_grays = 256;

                memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
                FT_Outline_Get_Bitmap(face->glyph->library, outline, &target);
            }
        } break;

        case FT_GLYPH_FORMAT_BITMAP: {
            FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode);
            SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat);

            // Assume that the other formats do not exist.
            SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode ||
                     FT_PIXEL_MODE_GRAY == pixel_mode ||
                     FT_PIXEL_MODE_BGRA == pixel_mode);

            // These are the only formats this ScalerContext should request.
            SkASSERT(SkMask::kBW_Format == maskFormat ||
                     SkMask::kA8_Format == maskFormat ||
                     SkMask::kARGB32_Format == maskFormat ||
                     SkMask::kLCD16_Format == maskFormat);

            if (fRec.fFlags & SkScalerContext::kEmbolden_Flag &&
                !(face->style_flags & FT_STYLE_FLAG_BOLD))
            {
                FT_GlyphSlot_Own_Bitmap(face->glyph);
                FT_Bitmap_Embolden(face->glyph->library, &face->glyph->bitmap,
                                   kBitmapEmboldenStrength, 0);
            }

            // If no scaling needed, directly copy glyph bitmap.
            if (glyph.fWidth == face->glyph->bitmap.width &&
                glyph.fHeight == face->glyph->bitmap.rows &&
                glyph.fTop == -face->glyph->bitmap_top &&
                glyph.fLeft == face->glyph->bitmap_left)
            {
                SkMask dstMask;
                glyph.toMask(&dstMask);
                copyFTBitmap(face->glyph->bitmap, dstMask);
                break;
            }

            // Otherwise, scale the bitmap.

            // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB)
            SkBitmap unscaledBitmap;
            unscaledBitmap.setConfig(SkBitmapConfig_for_FTPixelMode(pixel_mode),
                                     face->glyph->bitmap.width, face->glyph->bitmap.rows);
            unscaledBitmap.allocPixels();

            SkMask unscaledBitmapAlias;
            unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels());
            unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height());
            unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes();
            unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkBitmapConfig(unscaledBitmap.config());
            copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias);

            // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD.
            // BW requires an A8 target for resizing, which can then be down sampled.
            // LCD should use a 4x A8 target, which will then be down sampled.
            // For simplicity, LCD uses A8 and is replicated.
            int bitmapRowBytes = 0;
            if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) {
                bitmapRowBytes = glyph.rowBytes();
            }
            SkBitmap dstBitmap;
            dstBitmap.setConfig(SkBitmapConfig_for_SkMaskFormat(maskFormat),
                                glyph.fWidth, glyph.fHeight, bitmapRowBytes);
            if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) {
                dstBitmap.allocPixels();
            } else {
                dstBitmap.setPixels(glyph.fImage);
            }

            // Scale unscaledBitmap into dstBitmap.
            SkCanvas canvas(dstBitmap);
            canvas.clear(SK_ColorTRANSPARENT);
            canvas.scale(SkIntToScalar(glyph.fWidth) / SkIntToScalar(face->glyph->bitmap.width),
                         SkIntToScalar(glyph.fHeight) / SkIntToScalar(face->glyph->bitmap.rows));
            SkPaint paint;
            paint.setFilterLevel(SkPaint::kLow_FilterLevel);
            canvas.drawBitmap(unscaledBitmap, 0, 0, &paint);

            // If the destination is BW or LCD, convert from A8.
            if (SkMask::kBW_Format == maskFormat) {
                // Copy the A8 dstBitmap into the A1 glyph.fImage.
                SkMask dstMask;
                glyph.toMask(&dstMask);
                packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes());
            } else if (SkMask::kLCD16_Format == maskFormat) {
                // Copy the A8 dstBitmap into the LCD16 glyph.fImage.
                uint8_t* src = dstBitmap.getAddr8(0, 0);
                uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage);
                for (int y = dstBitmap.height(); y --> 0;) {
                    for (int x = 0; x < dstBitmap.width(); ++x) {
                        dst[x] = grayToRGB16(src[x]);
                    }
                    dst = (uint16_t*)((char*)dst + glyph.rowBytes());
                    src += dstBitmap.rowBytes();
                }
            }

        } break;

        default:
            SkDEBUGFAIL("unknown glyph format");
            memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight);
            return;
    }

// We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum,
// it is optional
#if defined(SK_GAMMA_APPLY_TO_A8)
    if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) {
        uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage;
        unsigned rowBytes = glyph.rowBytes();

        for (int y = glyph.fHeight - 1; y >= 0; --y) {
            for (int x = glyph.fWidth - 1; x >= 0; --x) {
                dst[x] = fPreBlend.fG[dst[x]];
            }
            dst += rowBytes;
        }
    }
#endif
}
static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options) {

    int sampleSize = 1;

    SkImageDecoder::Mode decodeMode = SkImageDecoder::kDecodePixels_Mode;
    SkColorType prefColorType = kN32_SkColorType;

    bool doDither = true;
    bool isMutable = false;
    float scale = 1.0f;
    bool preferQualityOverSpeed = false;
    bool requireUnpremultiplied = false;

    jobject javaBitmap = NULL;

    if (options != NULL) {
        sampleSize = env->GetIntField(options, gOptions_sampleSizeFieldID);
        if (optionsJustBounds(env, options)) {
            decodeMode = SkImageDecoder::kDecodeBounds_Mode;
        }

        // initialize these, in case we fail later on
        env->SetIntField(options, gOptions_widthFieldID, -1);
        env->SetIntField(options, gOptions_heightFieldID, -1);
        env->SetObjectField(options, gOptions_mimeFieldID, 0);

        jobject jconfig = env->GetObjectField(options, gOptions_configFieldID);
        prefColorType = GraphicsJNI::getNativeBitmapColorType(env, jconfig);
        isMutable = env->GetBooleanField(options, gOptions_mutableFieldID);
        doDither = env->GetBooleanField(options, gOptions_ditherFieldID);
        preferQualityOverSpeed = env->GetBooleanField(options,
                gOptions_preferQualityOverSpeedFieldID);
        requireUnpremultiplied = !env->GetBooleanField(options, gOptions_premultipliedFieldID);
        javaBitmap = env->GetObjectField(options, gOptions_bitmapFieldID);

        if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
            const int density = env->GetIntField(options, gOptions_densityFieldID);
            const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
            const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
            if (density != 0 && targetDensity != 0 && density != screenDensity) {
                scale = (float) targetDensity / density;
            }
        }
    }

    const bool willScale = scale != 1.0f;

    SkImageDecoder* decoder = SkImageDecoder::Factory(stream);
    if (decoder == NULL) {
        return nullObjectReturn("SkImageDecoder::Factory returned null");
    }

    decoder->setSampleSize(sampleSize);
    decoder->setDitherImage(doDither);
    decoder->setPreferQualityOverSpeed(preferQualityOverSpeed);
    decoder->setRequireUnpremultipliedColors(requireUnpremultiplied);

    SkBitmap* outputBitmap = NULL;
    unsigned int existingBufferSize = 0;
    if (javaBitmap != NULL) {
        outputBitmap = (SkBitmap*) env->GetLongField(javaBitmap, gBitmap_nativeBitmapFieldID);
        if (outputBitmap->isImmutable()) {
            ALOGW("Unable to reuse an immutable bitmap as an image decoder target.");
            javaBitmap = NULL;
            outputBitmap = NULL;
        } else {
            existingBufferSize = GraphicsJNI::getBitmapAllocationByteCount(env, javaBitmap);
        }
    }

    SkAutoTDelete<SkBitmap> adb(outputBitmap == NULL ? new SkBitmap : NULL);
    if (outputBitmap == NULL) outputBitmap = adb.get();

    NinePatchPeeker peeker(decoder);
    decoder->setPeeker(&peeker);

    JavaPixelAllocator javaAllocator(env);
    RecyclingPixelAllocator recyclingAllocator(outputBitmap->pixelRef(), existingBufferSize);
    ScaleCheckingAllocator scaleCheckingAllocator(scale, existingBufferSize);
    SkBitmap::Allocator* outputAllocator = (javaBitmap != NULL) ?
            (SkBitmap::Allocator*)&recyclingAllocator : (SkBitmap::Allocator*)&javaAllocator;
    if (decodeMode != SkImageDecoder::kDecodeBounds_Mode) {
        if (!willScale) {
            // If the java allocator is being used to allocate the pixel memory, the decoder
            // need not write zeroes, since the memory is initialized to 0.
            decoder->setSkipWritingZeroes(outputAllocator == &javaAllocator);
            decoder->setAllocator(outputAllocator);
        } else if (javaBitmap != NULL) {
            // check for eventual scaled bounds at allocation time, so we don't decode the bitmap
            // only to find the scaled result too large to fit in the allocation
            decoder->setAllocator(&scaleCheckingAllocator);
        }
    }

    // Only setup the decoder to be deleted after its stack-based, refcounted
    // components (allocators, peekers, etc) are declared. This prevents RefCnt
    // asserts from firing due to the order objects are deleted from the stack.
    SkAutoTDelete<SkImageDecoder> add(decoder);

    AutoDecoderCancel adc(options, decoder);

    // To fix the race condition in case "requestCancelDecode"
    // happens earlier than AutoDecoderCancel object is added
    // to the gAutoDecoderCancelMutex linked list.
    if (options != NULL && env->GetBooleanField(options, gOptions_mCancelID)) {
        return nullObjectReturn("gOptions_mCancelID");
    }

    SkBitmap decodingBitmap;
    if (!decoder->decode(stream, &decodingBitmap, prefColorType, decodeMode)) {
        return nullObjectReturn("decoder->decode returned false");
    }

    int scaledWidth = decodingBitmap.width();
    int scaledHeight = decodingBitmap.height();

    if (willScale && decodeMode != SkImageDecoder::kDecodeBounds_Mode) {
        scaledWidth = int(scaledWidth * scale + 0.5f);
        scaledHeight = int(scaledHeight * scale + 0.5f);
    }

    // update options (if any)
    if (options != NULL) {
        jstring mimeType = getMimeTypeString(env, decoder->getFormat());
        if (env->ExceptionCheck()) {
            return nullObjectReturn("OOM in getMimeTypeString()");
        }
        env->SetIntField(options, gOptions_widthFieldID, scaledWidth);
        env->SetIntField(options, gOptions_heightFieldID, scaledHeight);
        env->SetObjectField(options, gOptions_mimeFieldID, mimeType);
    }

    // if we're in justBounds mode, return now (skip the java bitmap)
    if (decodeMode == SkImageDecoder::kDecodeBounds_Mode) {
        return NULL;
    }

    jbyteArray ninePatchChunk = NULL;
    if (peeker.mPatch != NULL) {
        if (willScale) {
            scaleNinePatchChunk(peeker.mPatch, scale, scaledWidth, scaledHeight);
        }

        size_t ninePatchArraySize = peeker.mPatch->serializedSize();
        ninePatchChunk = env->NewByteArray(ninePatchArraySize);
        if (ninePatchChunk == NULL) {
            return nullObjectReturn("ninePatchChunk == null");
        }

        jbyte* array = (jbyte*) env->GetPrimitiveArrayCritical(ninePatchChunk, NULL);
        if (array == NULL) {
            return nullObjectReturn("primitive array == null");
        }

        memcpy(array, peeker.mPatch, peeker.mPatchSize);
        env->ReleasePrimitiveArrayCritical(ninePatchChunk, array, 0);
    }

    jobject ninePatchInsets = NULL;
    if (peeker.mHasInsets) {
        ninePatchInsets = env->NewObject(gInsetStruct_class, gInsetStruct_constructorMethodID,
                peeker.mOpticalInsets[0], peeker.mOpticalInsets[1], peeker.mOpticalInsets[2], peeker.mOpticalInsets[3],
                peeker.mOutlineInsets[0], peeker.mOutlineInsets[1], peeker.mOutlineInsets[2], peeker.mOutlineInsets[3],
                peeker.mOutlineRadius, peeker.mOutlineAlpha, scale);
        if (ninePatchInsets == NULL) {
            return nullObjectReturn("nine patch insets == null");
        }
        if (javaBitmap != NULL) {
            env->SetObjectField(javaBitmap, gBitmap_ninePatchInsetsFieldID, ninePatchInsets);
        }
    }

    if (willScale) {
        // This is weird so let me explain: we could use the scale parameter
        // directly, but for historical reasons this is how the corresponding
        // Dalvik code has always behaved. We simply recreate the behavior here.
        // The result is slightly different from simply using scale because of
        // the 0.5f rounding bias applied when computing the target image size
        const float sx = scaledWidth / float(decodingBitmap.width());
        const float sy = scaledHeight / float(decodingBitmap.height());

        // TODO: avoid copying when scaled size equals decodingBitmap size
        SkColorType colorType = colorTypeForScaledOutput(decodingBitmap.colorType());
        // FIXME: If the alphaType is kUnpremul and the image has alpha, the
        // colors may not be correct, since Skia does not yet support drawing
        // to/from unpremultiplied bitmaps.
        outputBitmap->setInfo(SkImageInfo::Make(scaledWidth, scaledHeight,
                colorType, decodingBitmap.alphaType()));
        if (!outputBitmap->allocPixels(outputAllocator, NULL)) {
            return nullObjectReturn("allocation failed for scaled bitmap");
        }

        // If outputBitmap's pixels are newly allocated by Java, there is no need
        // to erase to 0, since the pixels were initialized to 0.
        if (outputAllocator != &javaAllocator) {
            outputBitmap->eraseColor(0);
        }

        SkPaint paint;
        paint.setFilterLevel(SkPaint::kLow_FilterLevel);

        SkCanvas canvas(*outputBitmap);
        canvas.scale(sx, sy);
        canvas.drawBitmap(decodingBitmap, 0.0f, 0.0f, &paint);
    } else {
        outputBitmap->swap(decodingBitmap);
    }

    if (padding) {
        if (peeker.mPatch != NULL) {
            GraphicsJNI::set_jrect(env, padding,
                    peeker.mPatch->paddingLeft, peeker.mPatch->paddingTop,
                    peeker.mPatch->paddingRight, peeker.mPatch->paddingBottom);
        } else {
            GraphicsJNI::set_jrect(env, padding, -1, -1, -1, -1);
        }
    }

    // if we get here, we're in kDecodePixels_Mode and will therefore
    // already have a pixelref installed.
    if (outputBitmap->pixelRef() == NULL) {
        return nullObjectReturn("Got null SkPixelRef");
    }

    if (!isMutable && javaBitmap == NULL) {
        // promise we will never change our pixels (great for sharing and pictures)
        outputBitmap->setImmutable();
    }

    // detach bitmap from its autodeleter, since we want to own it now
    adb.detach();

    if (javaBitmap != NULL) {
        bool isPremultiplied = !requireUnpremultiplied;
        GraphicsJNI::reinitBitmap(env, javaBitmap, outputBitmap, isPremultiplied);
        outputBitmap->notifyPixelsChanged();
        // If a java bitmap was passed in for reuse, pass it back
        return javaBitmap;
    }

    int bitmapCreateFlags = 0x0;
    if (isMutable) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Mutable;
    if (!requireUnpremultiplied) bitmapCreateFlags |= GraphicsJNI::kBitmapCreateFlag_Premultiplied;

    // now create the java bitmap
    return GraphicsJNI::createBitmap(env, outputBitmap, javaAllocator.getStorageObj(),
            bitmapCreateFlags, ninePatchChunk, ninePatchInsets, -1);
}