void CanvasRenderingContext2DState::clipPath(const SkPath& path, AntiAliasingMode antiAliasingMode)
{
    m_clipList.clipPath(path, antiAliasingMode, affineTransformToSkMatrix(m_transform));
    m_hasClip = true;
    if (!path.isRect(0))
        m_hasComplexClip = true;
}
示例#2
0
void SkSVGDevice::AutoElement::addClipResources(const SkDraw& draw, Resources* resources) {
    SkASSERT(!draw.fClipStack->isWideOpen());

    SkPath clipPath;
    (void) draw.fClipStack->asPath(&clipPath);

    SkString clipID = fResourceBucket->addClip();
    const char* clipRule = clipPath.getFillType() == SkPath::kEvenOdd_FillType ?
                           "evenodd" : "nonzero";
    {
        // clipPath is in device space, but since we're only pushing transform attributes
        // to the leaf nodes, so are all our elements => SVG userSpaceOnUse == device space.
        AutoElement clipPathElement("clipPath", fWriter);
        clipPathElement.addAttribute("id", clipID);

        SkRect clipRect = SkRect::MakeEmpty();
        if (clipPath.isEmpty() || clipPath.isRect(&clipRect)) {
            AutoElement rectElement("rect", fWriter);
            rectElement.addRectAttributes(clipRect);
            rectElement.addAttribute("clip-rule", clipRule);
        } else {
            AutoElement pathElement("path", fWriter);
            pathElement.addPathAttributes(clipPath);
            pathElement.addAttribute("clip-rule", clipRule);
        }
    }

    resources->fClip.printf("url(#%s)", clipID.c_str());
}
示例#3
0
void draw(SkCanvas* canvas) {
    SkPaint paint;
    paint.setAntiAlias(true);
    for (auto xradius : { 0, 7, 13, 20 } ) {
        for (auto yradius : { 0, 9, 18, 40 } ) {
            SkPath path;
            path.addRoundRect({10, 10, 36, 46}, xradius, yradius);
            paint.setColor(path.isRect(nullptr) ? SK_ColorRED : path.isOval(nullptr) ?
                           SK_ColorBLUE : path.isConvex() ? SK_ColorGRAY : SK_ColorGREEN);
            canvas->drawPath(path, paint);
            canvas->translate(64, 0);
        }
        canvas->translate(-256, 64);
    }
}
示例#4
0
void OpaqueRegionSkia::didDrawPath(const PlatformContextSkia* context, const SkPath& path, const SkPaint& paint)
{
    SkRect rect;
    if (path.isRect(&rect)) {
        didDrawRect(context, rect, paint, 0);
        return;
    }

    bool fillsBounds = false;

    if (!paint.canComputeFastBounds())
        didDrawUnbounded(paint);
    else {
        rect = paint.computeFastBounds(path.getBounds(), &rect);
        didDraw(context, rect, paint, 0, fillsBounds, FillOrStroke);
    }
}
示例#5
0
void OpaqueRegionSkia::didDrawPath(const PlatformContextSkia* context, const AffineTransform& transform, const SkPath& path, const SkPaint& paint)
{
    SkRect rect;
    if (path.isRect(&rect)) {
        didDrawRect(context, transform, rect, paint, 0);
        return;
    }

    bool opaque = paintIsOpaque(paint);
    bool fillsBounds = false;

    if (!paint.canComputeFastBounds())
        didDrawUnbounded(paint, opaque);
    else {
        rect = paint.computeFastBounds(path.getBounds(), &rect);
        didDraw(context, transform, rect, paint, opaque, fillsBounds);
    }
}
bool SkPictureRecord::clipPath(const SkPath& path, SkRegion::Op op, bool doAA) {

    SkRect r;
    if (!path.isInverseFillType() && path.isRect(&r)) {
        return this->clipRect(r, op, doAA);
    }

    addDraw(CLIP_PATH);
    addPath(path);
    addInt(ClipParams_pack(op, doAA));
    recordRestoreOffsetPlaceholder(op);

    validate();

    if (fRecordFlags & SkPicture::kUsePathBoundsForClip_RecordingFlag) {
        return this->INHERITED::clipRect(path.getBounds(), op, doAA);
    } else {
        return this->INHERITED::clipPath(path, op, doAA);
    }
}
示例#7
0
void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
                                    bool doAA) {
    if (!path.isInverseFillType()) {
        SkRect r;
        if (path.isRect(&r)) {
            this->initRect(saveCount, r, op, doAA);
            return;
        }
        SkRect ovalRect;
        if (path.isOval(&ovalRect)) {
            SkRRect rrect;
            rrect.setOval(ovalRect);
            this->initRRect(saveCount, rrect, op, doAA);
            return;
        }
    }
    fPath.set(path);
    fPath.get()->setIsVolatile(true);
    fType = kPath_Type;
    this->initCommon(saveCount, op, doAA);
}
示例#8
0
PassRefPtr<JSONObject> LoggingCanvas::objectForSkPath(const SkPath& path)
{
    RefPtr<JSONObject> pathItem = JSONObject::create();
    pathItem->setString("fillType", fillTypeName(path.getFillType()));
    pathItem->setString("convexity", convexityName(path.getConvexity()));
    pathItem->setBoolean("isRect", path.isRect(0));
    SkPath::Iter iter(path, false);
    SkPoint points[4];
    RefPtr<JSONArray> pathPointsArray = JSONArray::create();
    for (SkPath::Verb verb = iter.next(points, false); verb != SkPath::kDone_Verb; verb = iter.next(points, false)) {
        VerbParams verbParams = segmentParams(verb);
        RefPtr<JSONObject> pathPointItem = JSONObject::create();
        pathPointItem->setString("verb", verbParams.name);
        ASSERT(verbParams.pointCount + verbParams.pointOffset <= WTF_ARRAY_LENGTH(points));
        pathPointItem->setArray("points", arrayForSkPoints(verbParams.pointCount, points + verbParams.pointOffset));
        if (SkPath::kConic_Verb == verb)
            pathPointItem->setNumber("conicWeight", iter.conicWeight());
        pathPointsArray->pushObject(pathPointItem);
    }
    pathItem->setArray("pathPoints", pathPointsArray);
    pathItem->setObject("bounds", objectForSkRect(path.getBounds()));
    return pathItem.release();
}
示例#9
0
static int countNestedRects(const SkPath& path, SkRect rects[2]) {
    if (path.isNestedRects(rects)) {
        return 2;
    }
    return path.isRect(&rects[0]);
}
示例#10
0
DEF_TEST(PathOpsBuilder, reporter) {
    SkOpBuilder builder;
    SkPath result;
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isEmpty());

    builder.add(result, kDifference_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isEmpty());

    builder.add(result, kUnion_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isEmpty());

    SkPath rectPath;
    rectPath.setFillType(SkPath::kEvenOdd_FillType);
    rectPath.addRect(0, 1, 2, 3, SkPath::kCW_Direction);
    builder.add(rectPath, kUnion_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    bool closed;
    SkPath::Direction dir;
    REPORTER_ASSERT(reporter, result.isRect(nullptr, &closed, &dir));
    REPORTER_ASSERT(reporter, closed);
    REPORTER_ASSERT(reporter, dir == SkPath::kCCW_Direction);
    int pixelDiff = comparePaths(reporter, __FUNCTION__, rectPath, result);
    REPORTER_ASSERT(reporter, pixelDiff == 0);

    rectPath.reset();
    rectPath.setFillType(SkPath::kEvenOdd_FillType);
    rectPath.addRect(0, 1, 2, 3, SkPath::kCCW_Direction);
    builder.add(rectPath, kUnion_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isRect(nullptr, &closed, &dir));
    REPORTER_ASSERT(reporter, closed);
    REPORTER_ASSERT(reporter, dir == SkPath::kCCW_Direction);
    REPORTER_ASSERT(reporter, rectPath == result);

    builder.add(rectPath, kDifference_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isEmpty());

    SkPath rect2, rect3;
    rect2.addRect(2, 1, 4, 3, SkPath::kCW_Direction);
    rect3.addRect(4, 1, 5, 3, SkPath::kCCW_Direction);
    builder.add(rectPath, kUnion_SkPathOp);
    builder.add(rect2, kUnion_SkPathOp);
    builder.add(rect3, kUnion_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    REPORTER_ASSERT(reporter, result.isRect(nullptr, &closed, &dir));
    REPORTER_ASSERT(reporter, closed);
    SkRect expected;
    expected.set(0, 1, 5, 3);
    REPORTER_ASSERT(reporter, result.getBounds() == expected);

    SkPath circle1, circle2, circle3;
    circle1.addCircle(5, 6, 4, SkPath::kCW_Direction);
    circle2.addCircle(7, 4, 8, SkPath::kCCW_Direction);
    circle3.addCircle(6, 5, 6, SkPath::kCW_Direction);
    SkPath opCompare;
    Op(circle1, circle2, kUnion_SkPathOp, &opCompare);
    Op(opCompare, circle3, kDifference_SkPathOp, &opCompare);
    builder.add(circle1, kUnion_SkPathOp);
    builder.add(circle2, kUnion_SkPathOp);
    builder.add(circle3, kDifference_SkPathOp);
    REPORTER_ASSERT(reporter, builder.resolve(&result));
    pixelDiff = comparePaths(reporter, __FUNCTION__, opCompare, result);
    REPORTER_ASSERT(reporter, pixelDiff == 0);
}
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
    SkASSERT(&src != NULL && dst != NULL);

    SkScalar radius = SkScalarHalf(fWidth);

    AutoTmpPath tmp(src, &dst);

    if (radius <= 0) {
        return;
    }

    // If src is really a rect, call our specialty strokeRect() method
    {
        bool isClosed;
        SkPath::Direction dir;
        if (src.isRect(&isClosed, &dir) && isClosed) {
            this->strokeRect(src.getBounds(), dst, dir);
            // our answer should preserve the inverseness of the src
            if (src.isInverseFillType()) {
                SkASSERT(!dst->isInverseFillType());
                dst->toggleInverseFillType();
            }
            return;
        }
    }

    SkAutoConicToQuads converter;
    const SkScalar conicTol = SK_Scalar1 / 4;

    SkPathStroker   stroker(src, radius, fMiterLimit, this->getCap(),
                            this->getJoin());
    SkPath::Iter    iter(src, false);
    SkPath::Verb    lastSegment = SkPath::kMove_Verb;

    for (;;) {
        SkPoint  pts[4];
        switch (iter.next(pts, false)) {
            case SkPath::kMove_Verb:
                stroker.moveTo(pts[0]);
                break;
            case SkPath::kLine_Verb:
                stroker.lineTo(pts[1]);
                lastSegment = SkPath::kLine_Verb;
                break;
            case SkPath::kQuad_Verb:
                stroker.quadTo(pts[1], pts[2]);
                lastSegment = SkPath::kQuad_Verb;
                break;
            case SkPath::kConic_Verb: {
                // todo: if we had maxcurvature for conics, perhaps we should
                // natively extrude the conic instead of converting to quads.
                const SkPoint* quadPts =
                    converter.computeQuads(pts, iter.conicWeight(), conicTol);
                for (int i = 0; i < converter.countQuads(); ++i) {
                    stroker.quadTo(quadPts[1], quadPts[2]);
                    quadPts += 2;
                }
                lastSegment = SkPath::kQuad_Verb;
            } break;
            case SkPath::kCubic_Verb:
                stroker.cubicTo(pts[1], pts[2], pts[3]);
                lastSegment = SkPath::kCubic_Verb;
                break;
            case SkPath::kClose_Verb:
                stroker.close(lastSegment == SkPath::kLine_Verb);
                break;
            case SkPath::kDone_Verb:
                goto DONE;
        }
    }
DONE:
    stroker.done(dst, lastSegment == SkPath::kLine_Verb);

    if (fDoFill) {
        if (src.cheapIsDirection(SkPath::kCCW_Direction)) {
            dst->reverseAddPath(src);
        } else {
            dst->addPath(src);
        }
    } else {
        //  Seems like we can assume that a 2-point src would always result in
        //  a convex stroke, but testing has proved otherwise.
        //  TODO: fix the stroker to make this assumption true (without making
        //  it slower that the work that will be done in computeConvexity())
#if 0
        // this test results in a non-convex stroke :(
        static void test(SkCanvas* canvas) {
            SkPoint pts[] = { 146.333328,  192.333328, 300.333344, 293.333344 };
            SkPaint paint;
            paint.setStrokeWidth(7);
            paint.setStrokeCap(SkPaint::kRound_Cap);
            canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
        }
#endif
#if 0
        if (2 == src.countPoints()) {
            dst->setIsConvex(true);
        }
#endif
    }
// Simple isRect test is inline TestPath, below.
// test_isRect provides more extensive testing.
static void test_isRect(skiatest::Reporter* reporter) {
    // passing tests (all moveTo / lineTo...
    SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
    SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
    SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
    SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
    SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
    SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
    SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f},
        {1, 0}, {.5f, 0}};
    SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1},
        {0, 1}, {0, .5f}};
    SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
    SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
    SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
    
    // failing tests
    SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
    SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
    SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
    SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
    SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
    SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
    SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
    SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
    
    // failing, no close
    SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
    SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto

    size_t testLen[] = {
        sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6),
        sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc),
        sizeof(rd), sizeof(re),
        sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6),
        sizeof(f7), sizeof(f8),
        sizeof(c1), sizeof(c2) 
    };
    SkPoint* tests[] = {
        r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re,
        f1, f2, f3, f4, f5, f6, f7, f8,
        c1, c2 
    };
    SkPoint* lastPass = re;
    SkPoint* lastClose = f8;
    bool fail = false;
    bool close = true;
    const size_t testCount = sizeof(tests) / sizeof(tests[0]);
    size_t index;
    for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
        SkPath path;
        path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY);
        for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) {
            path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY);
        }
        if (close) {
            path.close();
        }
        REPORTER_ASSERT(reporter, fail ^ path.isRect(0));
        if (tests[testIndex] == lastPass) {
            fail = true;
        }
        if (tests[testIndex] == lastClose) {
            close = false;
        }
    }
    
    // fail, close then line
    SkPath path1;
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    path1.lineTo(1, 0);
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
    
    // fail, move in the middle
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.moveTo(1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));

    // fail, move on the edge
    path1.reset();
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
    
    // fail, quad
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.quadTo(1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
    
    // fail, cubic
    path1.reset();
    path1.moveTo(r1[0].fX, r1[0].fY);
    for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) {
        if (index == 2) {
            path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
        }
        path1.lineTo(r1[index].fX, r1[index].fY);
    }
    path1.close();
    REPORTER_ASSERT(reporter, fail ^ path1.isRect(0));
}