static void solve_nu_svc( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int i; int l = prob->l; double nu = param->nu; schar *y = new schar[l]; for(i=0;i<l;i++) if(prob->y[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; }
static void solve_nu_svr( const svm_problem *prob, svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { if(param->nu < 0 || param->nu > 1) { cerr << "specified nu is out of range\n"; exit(1); } int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); // output the value of epsilon param->p = -si->r; for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y; }
static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;i<l;i++) { alpha2[i] = alpha2[i+l] = min(sum,C); sum -= alpha2[i]; linear_term[i] = - prob->y[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;i<l;i++) alpha[i] = alpha2[i] - alpha2[i+l]; delete[] alpha2; delete[] linear_term; delete[] y; }
static void solve_nu_svc( const svm_problem *prob, svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int i; int l = prob->l; double nu = param->nu; int y_pos = 0; int y_neg = 0; schar *y = new schar[l]; for(i=0;i<l;i++) if(prob->y[i]>0) { y[i] = +1; ++y_pos; } else { y[i] = -1; ++y_neg; } if(nu < 0 || nu*l/2 > min(y_pos,y_neg)) { cerr << "specified nu is infeasible\n"; exit(1); } double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i<l;i++) if(y[i] == +1) { alpha[i] = min(1.0,sum_pos); sum_pos -= alpha[i]; } else { alpha[i] = min(1.0,sum_neg); sum_neg -= alpha[i]; } double *zeros = new double[l]; for(i=0;i<l;i++) zeros[i] = 0; Solver_NU s; s.Solve(l, SVC_Q(*prob,*param,y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); //output the value of C param->C = 1/r; for(i=0;i<l;i++) alpha[i] *= y[i]/r; si->rho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; }