void FreeWarping :: computeResultAtCenterOfGravity(TimeStep *tStep) { int noCS = this->giveDomain(1)->giveNumberOfCrossSectionModels(); //number of warping Crosssections SolutionAtCG.resize(noCS); Element *closestElement; FloatArray lcoords, closest, lcg; SpatialLocalizer *sp = this->giveDomain(1)->giveSpatialLocalizer(); sp->init(); lcoords.resize(2); closest.resize(2); lcg.resize(2); for ( int j = 1; j <= noCS; ++j ) { lcg.at(1) = CG.at(j, 1); lcg.at(2) = CG.at(j, 2); closestElement = sp->giveElementClosestToPoint(lcoords, closest, lcg, 0); StructuralElement *sE = dynamic_cast< StructuralElement * >(closestElement); FloatArray u, r, b; FloatMatrix N; sE->computeNmatrixAt(lcoords, N); sE->computeVectorOf(VM_Total, tStep, u); u.resizeWithValues(3); r.beProductOf(N, u); SolutionAtCG.at(j) = r.at(1); } }
void HangingNode :: postInitialize() { Node :: postInitialize(); Element *e; FEInterpolation *fei; FloatArray lcoords, masterContribution; #ifdef __OOFEG if ( initialized ) { return; } initialized = true; #endif // First check element and interpolation if ( masterElement == -1 ) { // Then we find it by taking the closest (probably containing element) FloatArray closest; SpatialLocalizer *sp = this->domain->giveSpatialLocalizer(); sp->init(); // Closest point or containing point? It should be contained, but with numerical errors it might be slightly outside // so the closest point is more robust. if ( !( e = sp->giveElementClosestToPoint(lcoords, closest, coordinates, this->masterRegion) ) ) { OOFEM_ERROR("Couldn't find closest element (automatically)."); } this->masterElement = e->giveNumber(); } else if ( !( e = this->giveDomain()->giveElement(this->masterElement) ) ) { OOFEM_ERROR("Requested element %d doesn't exist.", this->masterElement); } if ( !( fei = e->giveInterpolation() ) ) { OOFEM_ERROR("Requested element %d doesn't have a interpolator.", this->masterElement); } if ( lcoords.giveSize() == 0 ) { // we don't need to do this again if the spatial localizer was used. fei->global2local( lcoords, coordinates, FEIElementGeometryWrapper(e) ); } // Initialize slave dofs (inside check of consistency of receiver and master dof) const IntArray &masterNodes = e->giveDofManArray(); for ( Dof *dof: *this ) { SlaveDof *sdof = dynamic_cast< SlaveDof * >(dof); if ( sdof ) { DofIDItem id = sdof->giveDofID(); fei = e->giveInterpolation(id); if ( !fei ) { OOFEM_ERROR("Requested interpolation for dof id %d doesn't exist in element %d.", id, this->masterElement); } #if 0 // This won't work (yet), as it requires some more general FEI classes, or something similar. if ( fei->hasMultiField() ) { FloatMatrix multiContribution; IntArray masterDofIDs, masterNodesDup, dofids; fei->evalMultiN(multiContribution, dofids, lcoords, FEIElementGeometryWrapper(e), 0.0); masterContribution.flatten(multiContribution); masterDofIDs.clear(); for ( int i = 0; i <= multiContribution.giveNumberOfColumns(); ++i ) { masterDofIDs.followedBy(dofids); masterNodesDup.followedBy(masterNodes); } sdof->initialize(masterNodesDup, & masterDofIDs, masterContribution); } else { } #else // Note: There can be more masterNodes than masterContributions, since all the // FEI classes are based on that the first nodes correspond to the simpler/linear interpolation. // If this assumption is changed in FEIElementGeometryWrapper + friends, // masterNode will also need to be modified for each dof accordingly. fei->evalN( masterContribution, lcoords, FEIElementGeometryWrapper(e) ); sdof->initialize(masterNodes, IntArray(), masterContribution); #endif } } }