示例#1
0
bool
ThreadHandler::_HandleSingleStepStep(CpuState* cpuState)
{
	TRACE_CONTROL("ThreadHandler::_HandleSingleStepStep(): ip: %llx\n",
		cpuState->InstructionPointer());

	switch (fStepMode) {
		case STEP_INTO:
		{
			// We continue stepping as long as we're in the statement.
			if (fStepStatement->ContainsAddress(cpuState->InstructionPointer())) {
				_SingleStepThread(cpuState->InstructionPointer());
				return true;
			}

			StackTrace* stackTrace = fThread->GetStackTrace();
			BReference<StackTrace> stackTraceReference(stackTrace);

			if (stackTrace == NULL && cpuState != NULL) {
				if (fDebuggerInterface->GetArchitecture()->CreateStackTrace(
						fThread->GetTeam(), this, cpuState, stackTrace) == B_OK) {
					stackTraceReference.SetTo(stackTrace, true);
				}
			}

			if (stackTrace != NULL) {
				StackFrame* frame = stackTrace->FrameAt(0);
				Image* image = frame->GetImage();
				ImageDebugInfo* info = NULL;
				if (GetImageDebugInfo(image, info) != B_OK)
					return false;

				BReference<ImageDebugInfo>(info, true);
				if (info->GetAddressSectionType(
						cpuState->InstructionPointer())
						== ADDRESS_SECTION_TYPE_PLT) {
					_SingleStepThread(cpuState->InstructionPointer());
					return true;
				}
			}
			return false;
		}

		case STEP_OVER:
		{
			// If we have stepped out of the statement, we're done.
			if (!fStepStatement->ContainsAddress(cpuState->InstructionPointer()))
				return false;
			return _DoStepOver(cpuState);
		}

		case STEP_OUT:
			// We never single-step in this case.
		default:
			return false;
	}
}
示例#2
0
status_t
DebugReportGenerator::_DumpDebuggedThreadInfo(BString& _output,
	::Thread* thread)
{
	AutoLocker< ::Team> locker;
	if (thread->State() != THREAD_STATE_STOPPED)
		return B_OK;

	StackTrace* trace = NULL;
	for (;;) {
		trace = thread->GetStackTrace();
		if (trace != NULL)
			break;

		locker.Unlock();
		status_t result = acquire_sem(fTeamDataSem);
		if (result != B_OK)
			return result;

		locker.Lock();
	}

	_output << "\t\tFrame\t\tIP\t\t\tFunction Name\n";
	_output << "\t\t-----------------------------------------------\n";
	BString data;
	for (int32 i = 0; StackFrame* frame = trace->FrameAt(i); i++) {
		char functionName[512];
		data.SetToFormat("\t\t%#08" B_PRIx64 "\t%#08" B_PRIx64 "\t%s\n",
			frame->FrameAddress(), frame->InstructionPointer(),
			UiUtils::FunctionNameForFrame(frame, functionName,
				sizeof(functionName)));

		_output << data;
	}

	_output << "\n\t\tRegisters:\n";

	CpuState* state = thread->GetCpuState();
	BVariant value;
	const Register* reg = NULL;
	for (int32 i = 0; i < fArchitecture->CountRegisters(); i++) {
		reg = fArchitecture->Registers() + i;
		state->GetRegisterValue(reg, value);

		char buffer[64];
		data.SetToFormat("\t\t\t%5s:\t%s\n", reg->Name(),
			UiUtils::VariantToString(value, buffer, sizeof(buffer)));
		_output << data;
	}

	return B_OK;
}
示例#3
0
void
CliStackTraceCommand::Execute(int argc, const char* const* argv,
	CliContext& context)
{
	// get the current thread
	Team* team = context.GetTeam();
	AutoLocker<Team> teamLocker(team);
	Thread* thread = context.CurrentThread();
	if (thread == NULL) {
		printf("no current thread\n");
		return;
	}

	if (thread->State() != THREAD_STATE_STOPPED) {
		printf("Current thread is not stopped. Can't get stack trace.\n");
		return;
	}

	// get its stack trace
	StackTrace* stackTrace = thread->GetStackTrace();
	while (stackTrace == NULL) {
		context.WaitForEvents(CliContext::EVENT_THREAD_STACK_TRACE_CHANGED);
		if (context.IsTerminating())
			return;
		stackTrace = thread->GetStackTrace();
	}
	BReference<StackTrace> stackTraceReference(stackTrace);
		// hold a reference until we're done

	teamLocker.Unlock();

	// print the stack trace
	int32 frameCount = stackTrace->CountFrames();
	for (int32 i = 0; i < frameCount; i++) {
		StackFrame* frame = stackTrace->FrameAt(i);
		printf("%3" B_PRId32 "  %#" B_PRIx64 "  %#" B_PRIx64, i,
			(uint64)frame->FrameAddress(), (uint64)frame->InstructionPointer());

		char functionName[512];
		UiUtils::FunctionNameForFrame(frame, functionName,
			sizeof(functionName));
		printf("  %s\n", functionName);
	}
}
示例#4
0
bool
ThreadHandler::_HandleBreakpointHitStep(CpuState* cpuState)
{
	// in any case uninstall the temporary breakpoint
	_UninstallTemporaryBreakpoint();

	switch (fStepMode) {
		case STEP_OVER:
		{
			StackTrace* stackTrace = fThread->GetStackTrace();
			BReference<StackTrace> stackTraceReference(stackTrace);

			if (stackTrace == NULL && cpuState != NULL) {
				if (fDebuggerInterface->GetArchitecture()->CreateStackTrace(
						fThread->GetTeam(), this, cpuState, stackTrace, NULL,
						1, false, false) == B_OK) {
					stackTraceReference.SetTo(stackTrace, true);
				}
			}
			if (stackTrace != NULL) {
				StackFrame* frame = stackTrace->FrameAt(0);
				// If we're not in the same frame we started in,
				// keep executing.
				if (frame != NULL && fPreviousFrameAddress
						!= frame->FrameAddress()) {
					status_t error = _InstallTemporaryBreakpoint(
						cpuState->InstructionPointer());
					if (error != B_OK)
						_StepFallback();
					else
						_RunThread(cpuState->InstructionPointer());
					return true;
				}
			}

			if (fPreviousFrameAddress != 0 && fSteppedOverFunctionAddress
					!= cpuState->InstructionPointer()) {
				TRACE_CONTROL("STEP_OVER: called function address %#" B_PRIx64
					", previous frame address: %#" B_PRIx64 ", frame address: %#"
					B_PRIx64 ", adding return info\n", fSteppedOverFunctionAddress,
					fPreviousFrameAddress, stackTrace->FrameAt(0)->FrameAddress());
				ReturnValueInfo* returnInfo = new(std::nothrow) ReturnValueInfo(
					fSteppedOverFunctionAddress, cpuState);
				if (returnInfo == NULL)
					return false;

				BReference<ReturnValueInfo> returnInfoReference(returnInfo, true);

				if (fThread->AddReturnValueInfo(returnInfo) != B_OK)
					return false;

				returnInfoReference.Detach();
				fSteppedOverFunctionAddress = 0;
			}

			// If we're still in the statement, we continue single-stepping,
			// otherwise we're done.
			if (fStepStatement->ContainsAddress(
					cpuState->InstructionPointer())) {
				if (!_DoStepOver(cpuState))
					_StepFallback();
				return true;
			}
			fPreviousFrameAddress = 0;
			return false;
		}

		case STEP_INTO:
			// Should never happen -- we don't set a breakpoint in this case.
			return false;

		case STEP_OUT:
		{
			// That's the return address, so we're done in theory,
			// unless we're a recursive function. Check if we've actually
			// exited the previous stack frame or not
			if (!_HasExitedFrame(cpuState->StackFramePointer())) {
				status_t error = _InstallTemporaryBreakpoint(
					cpuState->InstructionPointer());
				if (error != B_OK)
					_StepFallback();
				else
					_RunThread(cpuState->InstructionPointer());
				return true;
			}

			if (fPreviousFrameAddress == 0)
				return false;

			TRACE_CONTROL("ThreadHandler::_HandleBreakpointHitStep() - "
				"frame pointer 0x%#" B_PRIx64 ", previous: 0x%#" B_PRIx64
				" - step out adding return value\n", cpuState
					->StackFramePointer(), fPreviousFrameAddress);
			ReturnValueInfo* info = new(std::nothrow) ReturnValueInfo(
				fPreviousInstructionPointer, cpuState);
			if (info == NULL)
				return false;
			BReference<ReturnValueInfo> infoReference(info, true);
			if (fThread->AddReturnValueInfo(info) != B_OK)
				return false;

			infoReference.Detach();
			fPreviousFrameAddress = 0;
		}

		default:
			return false;
	}
}
示例#5
0
void
ThreadHandler::HandleThreadAction(uint32 action, target_addr_t address)
{
	AutoLocker<Team> locker(fThread->GetTeam());

	if (fThread->State() == THREAD_STATE_UNKNOWN)
		return;

	// When stop is requested, thread must be running, otherwise stopped.
	if (action == MSG_THREAD_STOP
			? fThread->State() != THREAD_STATE_RUNNING
			: fThread->State() != THREAD_STATE_STOPPED) {
		return;
	}

	// When stepping we need a stack trace. Save it before unsetting the state.
	CpuState* cpuState = fThread->GetCpuState();
	StackTrace* stackTrace = fThread->GetStackTrace();
	BReference<CpuState> cpuStateReference(cpuState);
	BReference<StackTrace> stackTraceReference(stackTrace);

	if (action == MSG_THREAD_SET_ADDRESS) {
		_HandleSetAddress(cpuState, address);
		return;
	}

	// When continuing the thread update thread state before actually issuing
	// the command, since we need to unlock.
	if (action != MSG_THREAD_STOP) {
		_SetThreadState(THREAD_STATE_RUNNING, NULL, THREAD_STOPPED_UNKNOWN,
			BString());
	}

	locker.Unlock();

	switch (action) {
		case MSG_THREAD_RUN:
			fStepMode = address != 0 ? STEP_UNTIL : STEP_NONE;
			if (address != 0)
				_InstallTemporaryBreakpoint(address);
			_RunThread(0);
			return;
		case MSG_THREAD_STOP:
			fStepMode = STEP_NONE;
			if (fDebuggerInterface->StopThread(ThreadID()) == B_OK)
				fThread->SetStopRequestPending();
			return;
		case MSG_THREAD_STEP_OVER:
		case MSG_THREAD_STEP_INTO:
		case MSG_THREAD_STEP_OUT:
			break;
	}

	TRACE_CONTROL("ThreadHandler::HandleThreadAction(MSG_THREAD_STEP_*)\n");

	// We want to step. We need a stack trace for that purpose. If we don't
	// have one yet, get it. Start with the CPU state.
	if (stackTrace == NULL && cpuState == NULL) {
		if (fDebuggerInterface->GetCpuState(fThread->ID(), cpuState) == B_OK)
			cpuStateReference.SetTo(cpuState, true);
	}

	if (stackTrace == NULL && cpuState != NULL) {
		if (fDebuggerInterface->GetArchitecture()->CreateStackTrace(
				fThread->GetTeam(), this, cpuState, stackTrace, NULL, 1,
				false, false) == B_OK) {
			stackTraceReference.SetTo(stackTrace, true);
		}
	}

	if (stackTrace == NULL || stackTrace->CountFrames() == 0) {
		_StepFallback();
		return;
	}

	StackFrame* frame = stackTrace->FrameAt(0);

	TRACE_CONTROL("  ip: %#" B_PRIx64 "\n", frame->InstructionPointer());

	target_addr_t frameIP = frame->GetCpuState()->InstructionPointer();
	// When the thread is in a syscall, do the same for all step kinds: Stop it
	// when it returns by means of a breakpoint.
	if (frame->Type() == STACK_FRAME_TYPE_SYSCALL) {
		// set a breakpoint at the CPU state's instruction pointer (points to
		// the return address, unlike the stack frame's instruction pointer)
// TODO: This is doesn't work correctly anymore. When stepping over a "syscall"
// instruction the thread is stopped twice. The after the first step the PC is
// incorrectly shown at the "syscall" instruction. Then we step again and are
// stopped at the temporary breakpoint after the "syscall" instruction. There
// are two problems. The first one is that we don't (cannot?) discriminate
// between the thread being in a syscall (like in a blocking syscall) and the
// thread having been stopped (or singled-stepped) at the end of the syscall.
// The second issue is that the temporary breakpoint is probably not necessary
// anymore, since single-stepping over "syscall" instructions should just work
// as expected.
		status_t error = _InstallTemporaryBreakpoint(frameIP);
		if (error != B_OK) {
			_StepFallback();
			return;
		}

		fStepMode = STEP_OUT;
		_RunThread(frameIP);
		return;
	}

	// For "step out" just set a temporary breakpoint on the return address.
	if (action == MSG_THREAD_STEP_OUT) {
		status_t error = _InstallTemporaryBreakpoint(frame->ReturnAddress());
		if (error != B_OK) {
			_StepFallback();
			return;
		}
		fPreviousInstructionPointer = frameIP;
		fPreviousFrameAddress = frame->FrameAddress();
		fStepMode = STEP_OUT;
		_RunThread(frameIP);
		return;
	}

	// For "step in" and "step over" we also need the source code statement at
	// the current instruction pointer.
	fStepStatement = _GetStatementAtInstructionPointer(frame);
	if (fStepStatement == NULL) {
		_StepFallback();
		return;
	}

	TRACE_CONTROL("  statement: %#" B_PRIx64 " - %#" B_PRIx64 "\n",
		fStepStatement->CoveringAddressRange().Start(),
		fStepStatement->CoveringAddressRange().End());

	if (action == MSG_THREAD_STEP_INTO) {
		// step into
		fStepMode = STEP_INTO;
		_SingleStepThread(frameIP);
	} else {
		fPreviousFrameAddress = frame->FrameAddress();
		// step over
		fStepMode = STEP_OVER;
		if (!_DoStepOver(frame->GetCpuState()))
			_StepFallback();
	}
}
示例#6
0
status_t
Architecture::CreateStackTrace(Team* team,
                               ImageDebugInfoProvider* imageInfoProvider, CpuState* cpuState,
                               StackTrace*& _stackTrace, int32 maxStackDepth, bool useExistingTrace)
{
    BReference<CpuState> cpuStateReference(cpuState);

    StackTrace* stackTrace = NULL;
    ObjectDeleter<StackTrace> stackTraceDeleter;
    StackFrame* frame = NULL;

    if (useExistingTrace)
        stackTrace = _stackTrace;
    else {
        // create the object
        stackTrace = new(std::nothrow) StackTrace;
        if (stackTrace == NULL)
            return B_NO_MEMORY;
        stackTraceDeleter.SetTo(stackTrace);
    }

    // if we're passed an already existing partial stack trace,
    // attempt to continue building it from where it left off.
    if (stackTrace->CountFrames() > 0) {
        frame = stackTrace->FrameAt(stackTrace->CountFrames() - 1);
        cpuState = frame->GetCpuState();
    }

    while (cpuState != NULL) {
        // get the instruction pointer
        target_addr_t instructionPointer = cpuState->InstructionPointer();
        if (instructionPointer == 0)
            break;

        // get the image for the instruction pointer
        AutoLocker<Team> teamLocker(team);
        Image* image = team->ImageByAddress(instructionPointer);
        BReference<Image> imageReference(image);
        teamLocker.Unlock();

        // get the image debug info
        ImageDebugInfo* imageDebugInfo = NULL;
        if (image != NULL)
            imageInfoProvider->GetImageDebugInfo(image, imageDebugInfo);
        BReference<ImageDebugInfo> imageDebugInfoReference(imageDebugInfo,
                true);

        // get the function
        teamLocker.Lock();
        FunctionInstance* function = NULL;
        FunctionDebugInfo* functionDebugInfo = NULL;
        if (imageDebugInfo != NULL) {
            function = imageDebugInfo->FunctionAtAddress(instructionPointer);
            if (function != NULL)
                functionDebugInfo = function->GetFunctionDebugInfo();
        }
        BReference<FunctionInstance> functionReference(function);
        teamLocker.Unlock();

        // If the CPU state's instruction pointer is actually the return address
        // of the next frame, we let the architecture fix that.
        if (frame != NULL
                && frame->ReturnAddress() == cpuState->InstructionPointer()) {
            UpdateStackFrameCpuState(frame, image,
                                     functionDebugInfo, cpuState);
        }

        // create the frame using the debug info
        StackFrame* previousFrame = NULL;
        CpuState* previousCpuState = NULL;
        if (function != NULL) {
            status_t error = functionDebugInfo->GetSpecificImageDebugInfo()
                             ->CreateFrame(image, function, cpuState, previousFrame,
                                           previousCpuState);
            if (error != B_OK && error != B_UNSUPPORTED)
                break;
        }

        // If we have no frame yet, let the architecture create it.
        if (previousFrame == NULL) {
            status_t error = CreateStackFrame(image, functionDebugInfo,
                                              cpuState, frame == NULL, previousFrame, previousCpuState);
            if (error != B_OK)
                break;
        }

        cpuStateReference.SetTo(previousCpuState, true);

        previousFrame->SetImage(image);
        previousFrame->SetFunction(function);

        if (!stackTrace->AddFrame(previousFrame)) {
            delete previousFrame;
            return B_NO_MEMORY;
        }

        frame = previousFrame;
        cpuState = previousCpuState;
        if (--maxStackDepth == 0)
            break;
    }

    stackTraceDeleter.Detach();
    _stackTrace = stackTrace;
    return B_OK;
}
bool
ThreadHandler::_HandleBreakpointHitStep(CpuState* cpuState)
{
	// in any case uninstall the temporary breakpoint
	_UninstallTemporaryBreakpoint();

	switch (fStepMode) {
		case STEP_OVER:
		{
			StackTrace* stackTrace = fThread->GetStackTrace();
			BReference<StackTrace> stackTraceReference(stackTrace);

			if (stackTrace == NULL && cpuState != NULL) {
				if (fDebuggerInterface->GetArchitecture()->CreateStackTrace(
						fThread->GetTeam(), this, cpuState, stackTrace, 0, 1,
						false, false) == B_OK) {
					stackTraceReference.SetTo(stackTrace, true);
				}
			}
			if (stackTrace != NULL) {
				StackFrame* frame = stackTrace->FrameAt(0);
				// If we're not in the same frame we started in,
				// keep executing.
				if (frame != NULL && fPreviousFrameAddress
						!= frame->FrameAddress()) {
					status_t error = _InstallTemporaryBreakpoint(
						cpuState->InstructionPointer());
					if (error != B_OK)
						_StepFallback();
					else
						_RunThread(cpuState->InstructionPointer());
					return true;
				}
			}

			// If we're still in the statement, we continue single-stepping,
			// otherwise we're done.
			if (fStepStatement->ContainsAddress(
					cpuState->InstructionPointer())) {
				if (!_DoStepOver(cpuState))
					_StepFallback();
				return true;
			}
			fPreviousFrameAddress = 0;
			return false;
		}

		case STEP_INTO:
			// Should never happen -- we don't set a breakpoint in this case.
			return false;

		case STEP_OUT:
		{
			// That's the return address, so we're done in theory,
			// unless we're a recursive function. Check if we've actually
			// exited the previous stack frame or not.
			fThread->SetExecutedSubroutine(cpuState->InstructionPointer());
			target_addr_t framePointer = cpuState->StackFramePointer();
			bool hasExitedFrame = fDebuggerInterface->GetArchitecture()
				->StackGrowthDirection() == STACK_GROWTH_DIRECTION_POSITIVE
					? framePointer < fPreviousFrameAddress
					: framePointer > fPreviousFrameAddress;

			if (!hasExitedFrame) {
				status_t error = _InstallTemporaryBreakpoint(
					cpuState->InstructionPointer());
				if (error != B_OK)
					_StepFallback();
				else
					_RunThread(cpuState->InstructionPointer());
				return true;
			}
			fPreviousFrameAddress = 0;
		}

		default:
			return false;
	}
}
示例#8
0
void
ThreadHandler::HandleThreadAction(uint32 action)
{
    AutoLocker<Team> locker(fThread->GetTeam());

    if (fThread->State() == THREAD_STATE_UNKNOWN)
        return;

    // When stop is requested, thread must be running, otherwise stopped.
    if (action == MSG_THREAD_STOP
            ? fThread->State() != THREAD_STATE_RUNNING
            : fThread->State() != THREAD_STATE_STOPPED) {
        return;
    }

    // When stepping we need a stack trace. Save it before unsetting the state.
    CpuState* cpuState = fThread->GetCpuState();
    StackTrace* stackTrace = fThread->GetStackTrace();
    Reference<CpuState> cpuStateReference(cpuState);
    Reference<StackTrace> stackTraceReference(stackTrace);

    // When continuing the thread update thread state before actually issuing
    // the command, since we need to unlock.
    if (action != MSG_THREAD_STOP) {
        _SetThreadState(THREAD_STATE_RUNNING, NULL, THREAD_STOPPED_UNKNOWN,
                        BString());
    }

    locker.Unlock();

    switch (action) {
    case MSG_THREAD_RUN:
        fStepMode = STEP_NONE;
        _RunThread(0);
        return;
    case MSG_THREAD_STOP:
        fStepMode = STEP_NONE;
        fDebuggerInterface->StopThread(ThreadID());
        return;
    case MSG_THREAD_STEP_OVER:
    case MSG_THREAD_STEP_INTO:
    case MSG_THREAD_STEP_OUT:
        break;
    }

    TRACE_CONTROL("ThreadHandler::HandleThreadAction(MSG_THREAD_STEP_*)\n");

    // We want to step. We need a stack trace for that purpose. If we don't
    // have one yet, get it. Start with the CPU state.
    if (stackTrace == NULL && cpuState == NULL) {
        if (fDebuggerInterface->GetCpuState(fThread->ID(), cpuState) == B_OK)
            cpuStateReference.SetTo(cpuState, true);
    }

    if (stackTrace == NULL && cpuState != NULL) {
        if (fDebuggerInterface->GetArchitecture()->CreateStackTrace(
                    fThread->GetTeam(), this, cpuState, stackTrace) == B_OK) {
            stackTraceReference.SetTo(stackTrace, true);
        }
    }

    if (stackTrace == NULL || stackTrace->CountFrames() == 0) {
        _StepFallback();
        return;
    }

    StackFrame* frame = stackTrace->FrameAt(0);

    TRACE_CONTROL("  ip: %#llx\n", frame->InstructionPointer());

    // When the thread is in a syscall, do the same for all step kinds: Stop it
    // when it return by means of a breakpoint.
    if (frame->Type() == STACK_FRAME_TYPE_SYSCALL) {
        // set a breakpoint at the CPU state's instruction pointer (points to
        // the return address, unlike the stack frame's instruction pointer)
        status_t error = _InstallTemporaryBreakpoint(
                             frame->GetCpuState()->InstructionPointer());
        if (error != B_OK) {
            _StepFallback();
            return;
        }

        fStepMode = STEP_OUT;
        _RunThread(frame->GetCpuState()->InstructionPointer());
        return;
    }

    // For "step out" just set a temporary breakpoint on the return address.
    if (action == MSG_THREAD_STEP_OUT) {
// TODO: That's OK in principle, but needs additional work with recursive
// functions. We need to store some information that allows us to determine
// whether we've actually stepped out of the current frame when we have hit
// the breakpoint.
        status_t error = _InstallTemporaryBreakpoint(frame->ReturnAddress());
        if (error != B_OK) {
            _StepFallback();
            return;
        }

        fStepMode = STEP_OUT;
        _RunThread(frame->GetCpuState()->InstructionPointer());
        return;
    }

    // For "step in" and "step over" we also need the source code statement at
    // the current instruction pointer.
    fStepStatement = _GetStatementAtInstructionPointer(frame);
    if (fStepStatement == NULL) {
        _StepFallback();
        return;
    }

    TRACE_CONTROL("  statement: %#llx - %#llx\n",
                  fStepStatement->CoveringAddressRange().Start(),
                  fStepStatement->CoveringAddressRange().End());

    if (action == MSG_THREAD_STEP_INTO) {
        // step into
        fStepMode = STEP_INTO;
        _SingleStepThread(frame->GetCpuState()->InstructionPointer());
    } else {
        // step over
        fStepMode = STEP_OVER;
        if (!_DoStepOver(frame->GetCpuState()))
            _StepFallback();
    }
}
示例#9
0
status_t
DebugReportGenerator::_DumpDebuggedThreadInfo(BFile& _output,
	::Thread* thread)
{
	AutoLocker< ::Team> locker;
	if (thread->State() != THREAD_STATE_STOPPED)
		return B_OK;

	status_t error;
	StackTrace* trace = NULL;
	for (;;) {
		trace = thread->GetStackTrace();
		if (trace != NULL)
			break;

		locker.Unlock();
		fTraceWaitingThread = thread;
		do {
			error = acquire_sem(fTeamDataSem);
		} while (error == B_INTERRUPTED);

		if (error != B_OK)
			break;

		locker.Lock();
	}

	BString data("\t\tFrame\t\tIP\t\t\tFunction Name\n");
	WRITE_AND_CHECK(_output, data);
	data = "\t\t-----------------------------------------------\n";
	WRITE_AND_CHECK(_output, data);
	for (int32 i = 0; StackFrame* frame = trace->FrameAt(i); i++) {
		char functionName[512];
		BString sourcePath;

		target_addr_t ip = frame->InstructionPointer();
		FunctionInstance* functionInstance;
		Statement* statement;
		if (fTeam->GetStatementAtAddress(ip,
				functionInstance, statement) == B_OK) {
			BReference<Statement> statementReference(statement, true);

			int32 line = statement->StartSourceLocation().Line();
			LocatableFile* sourceFile = functionInstance->GetFunction()
				->SourceFile();
			if (sourceFile != NULL) {
				sourceFile->GetPath(sourcePath);
				sourcePath.SetToFormat("(%s:%" B_PRId32 ")",
					sourcePath.String(), line);
			}
		}


		data.SetToFormat("\t\t%#08" B_PRIx64 "\t%#08" B_PRIx64 "\t%s %s\n",
			frame->FrameAddress(), ip, UiUtils::FunctionNameForFrame(
				frame, functionName, sizeof(functionName)),
				sourcePath.String());

		WRITE_AND_CHECK(_output, data);

		// only dump the topmost frame
		if (i == 0) {
			locker.Unlock();
			error = _DumpFunctionDisassembly(_output, frame->InstructionPointer());
			if (error != B_OK)
				return error;
			error = _DumpStackFrameMemory(_output, thread->GetCpuState(),
				frame->FrameAddress(), thread->GetTeam()->GetArchitecture()
					->StackGrowthDirection());
			if (error != B_OK)
				return error;
			locker.Lock();
		}

		if (frame->CountParameters() == 0 && frame->CountLocalVariables() == 0)
			continue;

		data = "\t\t\tVariables:\n";
		WRITE_AND_CHECK(_output, data);
		error = fNodeManager->SetStackFrame(thread, frame);
		if (error != B_OK)
			continue;

		ValueNodeContainer* container = fNodeManager->GetContainer();
		AutoLocker<ValueNodeContainer> containerLocker(container);
		for (int32 i = 0; i < container->CountChildren(); i++) {
			data.Truncate(0L);
			ValueNodeChild* child = container->ChildAt(i);
			containerLocker.Unlock();
			_ResolveValueIfNeeded(child->Node(), frame, 1);
			containerLocker.Lock();
			UiUtils::PrintValueNodeGraph(data, child, 3, 1);
			WRITE_AND_CHECK(_output, data);
		}
		data = "\n";
		WRITE_AND_CHECK(_output, data);
	}

	data = "\n\t\tRegisters:\n";
	WRITE_AND_CHECK(_output, data);

	CpuState* state = thread->GetCpuState();
	BVariant value;
	const Register* reg = NULL;
	for (int32 i = 0; i < fArchitecture->CountRegisters(); i++) {
		reg = fArchitecture->Registers() + i;
		state->GetRegisterValue(reg, value);

		if (reg->Format() == REGISTER_FORMAT_SIMD) {
			data.SetToFormat("\t\t\t%5s:\t%s\n", reg->Name(),
				UiUtils::FormatSIMDValue(value, reg->BitSize(),
					SIMD_RENDER_FORMAT_INT16, data).String());
		} else {
			char buffer[64];
			data.SetToFormat("\t\t\t%5s:\t%s\n", reg->Name(),
				UiUtils::VariantToString(value, buffer, sizeof(buffer)));
		}

		WRITE_AND_CHECK(_output, data);
	}

	return B_OK;
}