typename SurfaceBase<VertexType,EdgeType,TriangleType>::ctype SurfaceBase<VertexType,EdgeType,TriangleType>::minInteriorAngle(int n) const { ctype minAngle = 2*M_PI; const std::array<int, 3>& p = triangles(n).vertices; for (int i=0; i<3; i++){ StaticVector<ctype,3> a = vertices(p[(i+1)%3]) - vertices(p[i]); StaticVector<ctype,3> b = vertices(p[(i+2)%3]) - vertices(p[i]); ctype angle = acosf(a.dot(b) / (a.length() * b.length())); if (angle<minAngle) minAngle = angle; } return minAngle; }
void ContactMapping<2,ctype>::build(const std::vector<std::array<ctype,2> >& coords1, ///< The vertex coordinates of the first surface const std::vector<std::array<int,2> >& tri1, ///< The triangles of the first surface const std::vector<std::array<ctype,2> >& coords2, ///< The vertices of the second surface const std::vector<std::array<int,2> >& tri2, const DirectionFunction<2,ctype>* domainDirection, const DirectionFunction<2,ctype>* targetDirection ) { int numVertices1 = coords1.size(); int numVertices2 = coords2.size(); int nTri1 = tri1.size(); int nTri2 = tri2.size(); #if 0 printf("----- 1 -----\n"); for (int i=0; i<nTri1; i++) printf("-- %d %d\n", tri1[2*i], tri1[2*i+1]); printf("----- 2 -----\n"); for (int i=0; i<nTri2; i++) printf("-- %d %d\n", tri2[2*i], tri2[2*i+1]); #endif // ////////////////////////////////////////////////// // Build domain surface and its normal field // ////////////////////////////////////////////////// psurface_.domainVertices.resize(numVertices1); for (int i=0; i<numVertices1; i++) for (int j=0; j<2; j++) psurface_.domainVertices[i][j] = coords1[i][j]; // Build the domain segments psurface_.domainSegments.clear(); // may contain old stuff from previous runs psurface_.domainSegments.resize(nTri1); for (int i=0; i<nTri1; i++) { psurface_.domainSegments[i].points[0] = tri1[i][0]; psurface_.domainSegments[i].points[1] = tri1[i][1]; } // /////////////////////////////// // Build the domain normal field // /////////////////////////////// std::vector<StaticVector<ctype, 2> > domainNormals; std::vector<StaticVector<ctype, 2> > targetNormals; computeDiscreteDomainDirections(domainDirection, domainNormals); // ////////////////////////////////////////////////// // Build range surface and its normal field // ////////////////////////////////////////////////// // first mark the vertices that are actually used psurface_.targetVertices.resize(numVertices2); for (int i=0; i<numVertices2; i++) for (int j=0; j<2; j++) psurface_.targetVertices[i][j] = coords2[i][j]; // ///////////////////////////////////////////////////// // Build the segments-per-vertex arrays // ///////////////////////////////////////////////////// std::vector<std::array<int, 2> > segPerVertex1(psurface_.domainVertices.size()); for (size_t i=0; i<segPerVertex1.size(); i++) segPerVertex1[i][0] = segPerVertex1[i][1] = -1; for (int i=0; i<nTri1; i++) { //printf("segment %d: %d %d -- %d %d\n", i, tri2[2*i], tri2[2*i+1], used2[tri2[2*i]],used2[tri2[2*i+1]]); for (int j=0; j<2; j++) { int p = tri1[i][j]; if (segPerVertex1[p][0]==-1) segPerVertex1[p][0] = i; else segPerVertex1[p][1] = i; } } // use this to construct the neighbor relationships between segments for (size_t i=0; i<psurface_.domainSegments.size(); i++) { int vertex0 = psurface_.domainSegments[i].points[0]; int other0 = (segPerVertex1[vertex0][0] == i) ? segPerVertex1[vertex0][1] : segPerVertex1[vertex0][0]; psurface_.domainSegments[i].neighbor[0] = other0; int vertex1 = psurface_.domainSegments[i].points[1]; int other1 = (segPerVertex1[vertex1][0] == i) ? segPerVertex1[vertex1][1] : segPerVertex1[vertex1][0]; psurface_.domainSegments[i].neighbor[1] = other1; //printf("Segment %d neighbors: %d %d\n", i, other0, other1); } // Build the segments-per-vertex arrays for the target vertices std::vector<std::array<int, 2> > segPerVertex2(psurface_.targetVertices.size()); for (size_t i=0; i<segPerVertex2.size(); i++) segPerVertex2[i][0] = segPerVertex2[i][1] = -1; for (int i=0; i<nTri2; i++) { //printf("segment %d: %d %d -- %d %d\n", i, tri2[2*i], tri2[2*i+1], tri2[2*i], tri2[2*i+1]); for (int j=0; j<2; j++) { int p = tri2[i][j]; if (segPerVertex2[p][0]==-1) segPerVertex2[p][0] = i; else segPerVertex2[p][1] = i; } } computeDiscreteTargetDirections(tri2, targetDirection, targetNormals); // /////////////////////////////////////////////////////////////////////// // Project the vertices of the target surface onto the domain surface // /////////////////////////////////////////////////////////////////////// const ctype eps = 1e-10; for (size_t i=0; i<psurface_.targetVertices.size(); i++) { ctype bestLocalPos = std::numeric_limits<ctype>::max(); // init to something int bestSegment = -1; ctype bestDist = std::numeric_limits<ctype>::max(); for (int j=0; j<psurface_.domainSegments.size(); j++) { const StaticVector<ctype,2>& p0 = psurface_.domainVertices[psurface_.domainSegments[j].points[0]]; const StaticVector<ctype,2>& p1 = psurface_.domainVertices[psurface_.domainSegments[j].points[1]]; const StaticVector<ctype,2>& n0 = domainNormals[psurface_.domainSegments[j].points[0]]; const StaticVector<ctype,2>& n1 = domainNormals[psurface_.domainSegments[j].points[1]]; ctype local; // the unknown... if (NormalProjector<ctype>::computeInverseNormalProjection(p0, p1, n0, n1, psurface_.targetVertices[i], local)) { // We want that the line from the domain surface to its projection // approaches the target surface from the front side, i.e., it should // not pass through the body represented by the target surface. // We do a simplified test by comparing the connecting segment // with the normal at the target surface and the normal at the // domain surface /** \todo Rewrite this once we have expression templates */ StaticVector<ctype,2> base; StaticVector<ctype, 2> baseNormal; StaticVector<ctype, 2> segment; for (int k=0; k<2; k++) { base[k] = (1-local)*p0[k] + local*p1[k]; baseNormal[k] = (1-local)*n0[k] + local*n1[k]; segment[k] = psurface_.targetVertices[i][k] - base[k]; } ctype distance = segment.length2(); if (segment.dot(targetNormals[i]) > -0.0001 && segment.dot(baseNormal) > -0.0001 && distance > 1e-8) { //printf("aborting %g %g %g\n", segment * targetNormals[i], segment * baseNormal, distance); continue; } // There may be several inverse orthogonal projections. // We want the shortest one. if (distance < bestDist) { bestDist = distance; bestLocalPos = local; bestSegment = j; } } } // ///////////////////////////////////////////// // We have found a valid projection // ///////////////////////////////////////////// if (bestSegment != -1) { typename PSurface<1,ctype>::DomainSegment& bS = psurface_.domainSegments[bestSegment]; if (bestLocalPos < eps) { // Insert as new first element bS.nodes.insert(bS.nodes.begin(), typename PSurface<1,ctype>::Node(0, 1, true, true, segPerVertex2[i][0], segPerVertex2[i][1])); // Look for left neighbor segment if (psurface_.domainSegments[bestSegment].neighbor[0] != -1) { psurface_.domainSegments[psurface_.domainSegments[bestSegment].neighbor[0]].nodes.push_back( typename PSurface<1,ctype>::Node(1, 0, true, true, segPerVertex2[i][0], segPerVertex2[i][1]) ); } } else if (bestLocalPos > 1-eps) { typename PSurface<1,ctype>::Node newNode(1, 0, true, true, segPerVertex2[i][0], segPerVertex2[i][1]); bS.nodes.push_back(newNode); // Look for right neighbor segment if (psurface_.domainSegments[bestSegment].neighbor[1] != -1) { typename PSurface<1,ctype>::DomainSegment& rightNeighborSegment = psurface_.domainSegments[psurface_.domainSegments[bestSegment].neighbor[1]]; rightNeighborSegment.nodes.insert(rightNeighborSegment.nodes.begin(), typename PSurface<1,ctype>::Node(0, 1, true, true, segPerVertex2[i][0], segPerVertex2[i][1])); } } else { int nNodes = bS.nodes.size(); bS.nodes.resize(nNodes+1); int j=nNodes-1; for (; j>=0; j--) { if (bS.nodes[j].domainLocalPosition > bestLocalPos) bS.nodes[j+1] = bS.nodes[j]; else break; } bS.nodes[j+1] = typename PSurface<1,ctype>::Node(bestLocalPos, 0, false, true, segPerVertex2[i][0], segPerVertex2[i][1]); } } } // ////////////////////////////////////////////////////////////////////// // Insert missing nodes that belong to vertices of the domain segment // ////////////////////////////////////////////////////////////////////// for (int i=0; i<psurface_.domainSegments.size(); i++) { typename PSurface<1,ctype>::DomainSegment& cS = psurface_.domainSegments[i]; // Insert node belonging to domain vertex to the segment to the left of the vertex if (cS.nodes.size()==0 || !cS.nodes[0].isNodeOnVertex || (cS.nodes.size()==1 && cS.nodes[0].isNodeOnVertex && cS.nodes[0].domainLocalPosition > 1-eps)) { ctype rangeLocalPosition; int rangeSegment; if (NormalProjector<ctype>::normalProjection(psurface_.domainVertices[cS.points[0]], domainNormals[cS.points[0]], rangeSegment, rangeLocalPosition, tri2, coords2)) { typename PSurface<1,ctype>::Node newNode(0, rangeLocalPosition, true, false, rangeSegment, rangeSegment); cS.nodes.insert(cS.nodes.begin(), newNode); } } // Insert node belonging to domain vertex to the segment to the right of the vertex if (cS.nodes.size()==0 || !cS.nodes.back().isNodeOnVertex || (cS.nodes.size()==1 && cS.nodes[0].isNodeOnVertex && cS.nodes[0].domainLocalPosition < eps)) { ctype rangeLocalPosition; int rangeSegment; if (NormalProjector<ctype>::normalProjection(psurface_.domainVertices[cS.points[1]], domainNormals[cS.points[1]], rangeSegment, rangeLocalPosition, tri2, coords2)) { typename PSurface<1,ctype>::Node newNode(1, rangeLocalPosition, true, false, rangeSegment, rangeSegment); cS.nodes.push_back(newNode); } } } #if 0 for (int i=0; i<psurface_.domainSegments.size(); i++) { printf(" --- segment %d --- (%d --> %d)\n", i, psurface_.domainSegments[i].points[0],psurface_.domainSegments[i].points[1]); for (int j=0; j<psurface_.domainSegments[i].nodes.size(); j++) std::cout << psurface_.domainSegments[i].nodes[j]; std::cout << std::endl; } #endif // ///////////////////////////////////////////////////// // Insert edges // ///////////////////////////////////////////////////// /** \todo Only works if the relevant domain is a single connected component */ for (int i=0; i<psurface_.domainSegments.size(); i++) { std::vector<typename PSurface<1,ctype>::Node>& nodes = psurface_.domainSegments[i].nodes; //////////////////////////////// for (int j=0; j<int(nodes.size())-1; j++) { if (nodes[j].rangeSegments[0] == nodes[j+1].rangeSegments[0]) nodes[j].rightRangeSegment = nodes[j].rangeSegments[0]; else if (nodes[j].rangeSegments[0] == nodes[j+1].rangeSegments[1]) nodes[j].rightRangeSegment = nodes[j].rangeSegments[0]; else if (nodes[j].rangeSegments[1] == nodes[j+1].rangeSegments[0]) nodes[j].rightRangeSegment = nodes[j].rangeSegments[1]; else if (nodes[j].rangeSegments[1] == nodes[j+1].rangeSegments[1]) nodes[j].rightRangeSegment = nodes[j].rangeSegments[1]; else throw(std::runtime_error("Segment of the PSurface<1> data structure is inconsistent!")); if (nodes[j].rightRangeSegment == -1) throw(std::runtime_error("Segment of the PSurface<1> data structure is inconsistent!")); } } }
ctype CircularPatch<ctype>::distanceTo(const StaticVector<ctype,3> &p) const { int i, j; ctype bestDist = std::numeric_limits<ctype>::max(); // check point against triangles for (j=0; j<size(); j++){ const DomainTriangle<ctype>& cT = par->triangles(triangles[j]); StaticVector<ctype,3> triPoints[3]; triPoints[0] = par->vertices(cT.vertices[0]); triPoints[1] = par->vertices(cT.vertices[1]); triPoints[2] = par->vertices(cT.vertices[2]); // local base StaticVector<ctype,3> a = triPoints[1] - triPoints[0]; StaticVector<ctype,3> b = triPoints[2] - triPoints[0]; StaticVector<ctype,3> c = a.cross(b); c.normalize(); StaticVector<ctype,3> x = p - triPoints[0]; // write x in the new base (Cramer's rule) StaticMatrix<ctype,3> numerator(a, b, c); StaticMatrix<ctype,3> alphaMat(x, b, c); StaticMatrix<ctype,3> betaMat(a, x, c); StaticMatrix<ctype,3> gammaMat(a, b, x); ctype alpha = alphaMat.det()/numerator.det(); ctype beta = betaMat.det()/numerator.det(); ctype gamma = gammaMat.det()/numerator.det(); // check whether orthogonal projection onto the ab plane is in triangle bool isIn = alpha>=0 && beta>=0 && (1-alpha-beta)>=0; if (isIn && fabs(gamma)<bestDist){ // printf("a(%1.2f %1.2f %1.2f) b(%1.2f %1.2f %1.2f) c(%1.2f %1.2f %1.2f) x(%1.2f %1.2f %1.2f)\n", // a.x, a.y, a.z, b.x, b.y, b.z, c.x, c.y, c.z, x.x, x.y, x.z); // printf("tri: %d, alpha = %f, beta = %f, gamma = %f\n", j, alpha, beta, gamma); bestDist = fabs(gamma); } } // check point against edges for (i=0; i<size(); i++){ for (j=0; j<3; j++){ const DomainTriangle<ctype>& cT = par->triangles(triangles[i]); StaticVector<ctype,3> from = par->vertices(cT.vertices[j]); StaticVector<ctype,3> to = par->vertices(cT.vertices[(j+1)%3]); StaticVector<ctype,3> edge = to - from; ctype projectLength = edge.dot(p - from)/edge.length(); StaticVector<ctype,3> projection = edge/edge.length() * projectLength; ctype orthoDist = ((p-from) - projection).length(); if (projectLength>=0 && projectLength<=edge.length() && orthoDist<bestDist) bestDist = orthoDist; } } // check point against vertices for (i=0; i<size(); i++){ for (j=0; j<3; j++){ ctype dist = (p - par->vertices(par->triangles(triangles[i]).vertices[j])).length(); if (dist < bestDist){ bestDist = dist; } } } return bestDist; }