int MatrixOutputCommand::process(vector<SharedRAbundVector*> thisLookup){ try { vector< vector< vector<seqDist> > > calcDistsTotals; //each iter, one for each calc, then each groupCombos dists. this will be used to make .dist files vector< vector<seqDist> > calcDists; calcDists.resize(matrixCalculators.size()); for (int thisIter = 0; thisIter < iters+1; thisIter++) { map<string, string> variables; variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(sharedfile)); variables["[distance]"] = thisLookup[0]->getLabel(); variables["[tag2]"] = ""; vector<SharedRAbundVector*> thisItersLookup = thisLookup; if (subsample && (thisIter != 0)) { SubSample sample; vector<string> tempLabels; //dont need since we arent printing the sampled sharedRabunds //make copy of lookup so we don't get access violations vector<SharedRAbundVector*> newLookup; for (int k = 0; k < thisItersLookup.size(); k++) { SharedRAbundVector* temp = new SharedRAbundVector(); temp->setLabel(thisItersLookup[k]->getLabel()); temp->setGroup(thisItersLookup[k]->getGroup()); newLookup.push_back(temp); } //for each bin for (int k = 0; k < thisItersLookup[0]->getNumBins(); k++) { if (m->control_pressed) { for (int j = 0; j < newLookup.size(); j++) { delete newLookup[j]; } return 0; } for (int j = 0; j < thisItersLookup.size(); j++) { newLookup[j]->push_back(thisItersLookup[j]->getAbundance(k), thisItersLookup[j]->getGroup()); } } tempLabels = sample.getSample(newLookup, subsampleSize); thisItersLookup = newLookup; } if(processors == 1){ driver(thisItersLookup, 0, numGroups, calcDists); }else{ int process = 1; vector<int> processIDS; #if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix) //loop through and create all the processes you want while (process != processors) { pid_t pid = fork(); if (pid > 0) { processIDS.push_back(pid); process++; }else if (pid == 0){ driver(thisItersLookup, lines[process].start, lines[process].end, calcDists); string tempdistFileName = m->getRootName(m->getSimpleName(sharedfile)) + m->mothurGetpid(process) + ".dist"; ofstream outtemp; m->openOutputFile(tempdistFileName, outtemp); for (int i = 0; i < calcDists.size(); i++) { outtemp << calcDists[i].size() << endl; for (int j = 0; j < calcDists[i].size(); j++) { outtemp << calcDists[i][j].seq1 << '\t' << calcDists[i][j].seq2 << '\t' << calcDists[i][j].dist << endl; } } outtemp.close(); exit(0); }else { m->mothurOut("[ERROR]: unable to spawn the necessary processes."); m->mothurOutEndLine(); for (int i = 0; i < processIDS.size(); i++) { kill (processIDS[i], SIGINT); } exit(0); } } //parent do your part driver(thisItersLookup, lines[0].start, lines[0].end, calcDists); //force parent to wait until all the processes are done for (int i = 0; i < processIDS.size(); i++) { int temp = processIDS[i]; wait(&temp); } for (int i = 0; i < processIDS.size(); i++) { string tempdistFileName = m->getRootName(m->getSimpleName(sharedfile)) + toString(processIDS[i]) + ".dist"; ifstream intemp; m->openInputFile(tempdistFileName, intemp); for (int k = 0; k < calcDists.size(); k++) { int size = 0; intemp >> size; m->gobble(intemp); for (int j = 0; j < size; j++) { int seq1 = 0; int seq2 = 0; float dist = 1.0; intemp >> seq1 >> seq2 >> dist; m->gobble(intemp); seqDist tempDist(seq1, seq2, dist); calcDists[k].push_back(tempDist); } } intemp.close(); m->mothurRemove(tempdistFileName); } #else ////////////////////////////////////////////////////////////////////////////////////////////////////// //Windows version shared memory, so be careful when passing variables through the distSharedData struct. //Above fork() will clone, so memory is separate, but that's not the case with windows, //Taking advantage of shared memory to pass results vectors. ////////////////////////////////////////////////////////////////////////////////////////////////////// vector<distSharedData*> pDataArray; DWORD dwThreadIdArray[processors-1]; HANDLE hThreadArray[processors-1]; //Create processor worker threads. for( int i=1; i<processors; i++ ){ //make copy of lookup so we don't get access violations vector<SharedRAbundVector*> newLookup; for (int k = 0; k < thisItersLookup.size(); k++) { SharedRAbundVector* temp = new SharedRAbundVector(); temp->setLabel(thisItersLookup[k]->getLabel()); temp->setGroup(thisItersLookup[k]->getGroup()); newLookup.push_back(temp); } //for each bin for (int k = 0; k < thisItersLookup[0]->getNumBins(); k++) { if (m->control_pressed) { for (int j = 0; j < newLookup.size(); j++) { delete newLookup[j]; } return 0; } for (int j = 0; j < thisItersLookup.size(); j++) { newLookup[j]->push_back(thisItersLookup[j]->getAbundance(k), thisItersLookup[j]->getGroup()); } } // Allocate memory for thread data. distSharedData* tempSum = new distSharedData(m, lines[i].start, lines[i].end, Estimators, newLookup); pDataArray.push_back(tempSum); processIDS.push_back(i); hThreadArray[i-1] = CreateThread(NULL, 0, MyDistSharedThreadFunction, pDataArray[i-1], 0, &dwThreadIdArray[i-1]); } //parent do your part driver(thisItersLookup, lines[0].start, lines[0].end, calcDists); //Wait until all threads have terminated. WaitForMultipleObjects(processors-1, hThreadArray, TRUE, INFINITE); //Close all thread handles and free memory allocations. for(int i=0; i < pDataArray.size(); i++){ if (pDataArray[i]->count != (pDataArray[i]->end-pDataArray[i]->start)) { m->mothurOut("[ERROR]: process " + toString(i) + " only processed " + toString(pDataArray[i]->count) + " of " + toString(pDataArray[i]->end-pDataArray[i]->start) + " groups assigned to it, quitting. \n"); m->control_pressed = true; } for (int j = 0; j < pDataArray[i]->thisLookup.size(); j++) { delete pDataArray[i]->thisLookup[j]; } for (int k = 0; k < calcDists.size(); k++) { int size = pDataArray[i]->calcDists[k].size(); for (int j = 0; j < size; j++) { calcDists[k].push_back(pDataArray[i]->calcDists[k][j]); } } CloseHandle(hThreadArray[i]); delete pDataArray[i]; } #endif } if (subsample && (thisIter != 0)) { if((thisIter) % 100 == 0){ m->mothurOutJustToScreen(toString(thisIter)+"\n"); } calcDistsTotals.push_back(calcDists); for (int i = 0; i < calcDists.size(); i++) { for (int j = 0; j < calcDists[i].size(); j++) { if (m->debug) { m->mothurOut("[DEBUG]: Results: iter = " + toString(thisIter) + ", " + thisLookup[calcDists[i][j].seq1]->getGroup() + " - " + thisLookup[calcDists[i][j].seq2]->getGroup() + " distance = " + toString(calcDists[i][j].dist) + ".\n"); } } } //clean up memory for (int i = 0; i < thisItersLookup.size(); i++) { delete thisItersLookup[i]; } thisItersLookup.clear(); }else { //print results for whole dataset for (int i = 0; i < calcDists.size(); i++) { if (m->control_pressed) { break; } //initialize matrix vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { matrix[k].resize(thisLookup.size(), 0.0); } for (int j = 0; j < calcDists[i].size(); j++) { int row = calcDists[i][j].seq1; int column = calcDists[i][j].seq2; double dist = calcDists[i][j].dist; matrix[row][column] = dist; matrix[column][row] = dist; } variables["[outputtag]"] = output; variables["[calc]"] = matrixCalculators[i]->getName(); string distFileName = getOutputFileName("phylip",variables); outputNames.push_back(distFileName); outputTypes["phylip"].push_back(distFileName); ofstream outDist; m->openOutputFile(distFileName, outDist); outDist.setf(ios::fixed, ios::floatfield); outDist.setf(ios::showpoint); printSims(outDist, matrix); outDist.close(); } } for (int i = 0; i < calcDists.size(); i++) { calcDists[i].clear(); } } if (iters != 0) { //we need to find the average distance and standard deviation for each groups distance vector< vector<seqDist> > calcAverages = m->getAverages(calcDistsTotals, mode); //find standard deviation vector< vector<seqDist> > stdDev = m->getStandardDeviation(calcDistsTotals, calcAverages); //print results for (int i = 0; i < calcDists.size(); i++) { vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { matrix[k].resize(thisLookup.size(), 0.0); } vector< vector<double> > stdmatrix; //square matrix to represent the stdDev stdmatrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { stdmatrix[k].resize(thisLookup.size(), 0.0); } for (int j = 0; j < calcAverages[i].size(); j++) { int row = calcAverages[i][j].seq1; int column = calcAverages[i][j].seq2; float dist = calcAverages[i][j].dist; float stdDist = stdDev[i][j].dist; matrix[row][column] = dist; matrix[column][row] = dist; stdmatrix[row][column] = stdDist; stdmatrix[column][row] = stdDist; } map<string, string> variables; variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(sharedfile)); variables["[distance]"] = thisLookup[0]->getLabel(); variables["[outputtag]"] = output; variables["[tag2]"] = "ave"; variables["[calc]"] = matrixCalculators[i]->getName(); string distFileName = getOutputFileName("phylip",variables); outputNames.push_back(distFileName); outputTypes["phylip"].push_back(distFileName); //set current phylip file to average distance matrix m->setPhylipFile(distFileName); ofstream outAve; m->openOutputFile(distFileName, outAve); outAve.setf(ios::fixed, ios::floatfield); outAve.setf(ios::showpoint); printSims(outAve, matrix); outAve.close(); variables["[tag2]"] = "std"; distFileName = getOutputFileName("phylip",variables); outputNames.push_back(distFileName); outputTypes["phylip"].push_back(distFileName); ofstream outSTD; m->openOutputFile(distFileName, outSTD); outSTD.setf(ios::fixed, ios::floatfield); outSTD.setf(ios::showpoint); printSims(outSTD, stdmatrix); outSTD.close(); } } return 0; } catch(exception& e) { m->errorOut(e, "MatrixOutputCommand", "process"); exit(1); } }
int TreeGroupCommand::process(vector<SharedRAbundVector*> thisLookup) { try{ vector< vector< vector<seqDist> > > calcDistsTotals; //each iter, one for each calc, then each groupCombos dists. this will be used to make .dist files vector< vector<seqDist> > calcDists; calcDists.resize(treeCalculators.size()); for (int thisIter = 0; thisIter < iters; thisIter++) { vector<SharedRAbundVector*> thisItersLookup = thisLookup; if (subsample) { SubSample sample; vector<string> tempLabels; //dont need since we arent printing the sampled sharedRabunds //make copy of lookup so we don't get access violations vector<SharedRAbundVector*> newLookup; for (int k = 0; k < thisItersLookup.size(); k++) { SharedRAbundVector* temp = new SharedRAbundVector(); temp->setLabel(thisItersLookup[k]->getLabel()); temp->setGroup(thisItersLookup[k]->getGroup()); newLookup.push_back(temp); } //for each bin for (int k = 0; k < thisItersLookup[0]->getNumBins(); k++) { if (m->control_pressed) { for (int j = 0; j < newLookup.size(); j++) { delete newLookup[j]; } return 0; } for (int j = 0; j < thisItersLookup.size(); j++) { newLookup[j]->push_back(thisItersLookup[j]->getAbundance(k), thisItersLookup[j]->getGroup()); } } tempLabels = sample.getSample(newLookup, subsampleSize); thisItersLookup = newLookup; } if(processors == 1){ driver(thisItersLookup, 0, numGroups, calcDists); }else{ int process = 1; vector<int> processIDS; #if defined (__APPLE__) || (__MACH__) || (linux) || (__linux) || (__linux__) || (__unix__) || (__unix) //loop through and create all the processes you want while (process != processors) { pid_t pid = fork(); if (pid > 0) { processIDS.push_back(pid); process++; }else if (pid == 0){ driver(thisItersLookup, lines[process].start, lines[process].end, calcDists); string tempdistFileName = m->getRootName(m->getSimpleName(sharedfile)) + m->mothurGetpid(process) + ".dist"; ofstream outtemp; m->openOutputFile(tempdistFileName, outtemp); for (int i = 0; i < calcDists.size(); i++) { outtemp << calcDists[i].size() << endl; for (int j = 0; j < calcDists[i].size(); j++) { outtemp << calcDists[i][j].seq1 << '\t' << calcDists[i][j].seq2 << '\t' << calcDists[i][j].dist << endl; } } outtemp.close(); exit(0); }else { m->mothurOut("[ERROR]: unable to spawn the necessary processes."); m->mothurOutEndLine(); for (int i = 0; i < processIDS.size(); i++) { kill (processIDS[i], SIGINT); } exit(0); } } //parent do your part driver(thisItersLookup, lines[0].start, lines[0].end, calcDists); //force parent to wait until all the processes are done for (int i = 0; i < processIDS.size(); i++) { int temp = processIDS[i]; wait(&temp); } for (int i = 0; i < processIDS.size(); i++) { string tempdistFileName = m->getRootName(m->getSimpleName(sharedfile)) + toString(processIDS[i]) + ".dist"; ifstream intemp; m->openInputFile(tempdistFileName, intemp); for (int k = 0; k < calcDists.size(); k++) { int size = 0; intemp >> size; m->gobble(intemp); for (int j = 0; j < size; j++) { int seq1 = 0; int seq2 = 0; float dist = 1.0; intemp >> seq1 >> seq2 >> dist; m->gobble(intemp); seqDist tempDist(seq1, seq2, dist); calcDists[k].push_back(tempDist); } } intemp.close(); m->mothurRemove(tempdistFileName); } #else ////////////////////////////////////////////////////////////////////////////////////////////////////// //Windows version shared memory, so be careful when passing variables through the treeSharedData struct. //Above fork() will clone, so memory is separate, but that's not the case with windows, //Taking advantage of shared memory to pass results vectors. ////////////////////////////////////////////////////////////////////////////////////////////////////// vector<treeSharedData*> pDataArray; DWORD dwThreadIdArray[processors-1]; HANDLE hThreadArray[processors-1]; //Create processor worker threads. for( int i=1; i<processors; i++ ){ //make copy of lookup so we don't get access violations vector<SharedRAbundVector*> newLookup; for (int k = 0; k < thisItersLookup.size(); k++) { SharedRAbundVector* temp = new SharedRAbundVector(); temp->setLabel(thisItersLookup[k]->getLabel()); temp->setGroup(thisItersLookup[k]->getGroup()); newLookup.push_back(temp); } //for each bin for (int k = 0; k < thisItersLookup[0]->getNumBins(); k++) { if (m->control_pressed) { for (int j = 0; j < newLookup.size(); j++) { delete newLookup[j]; } return 0; } for (int j = 0; j < thisItersLookup.size(); j++) { newLookup[j]->push_back(thisItersLookup[j]->getAbundance(k), thisItersLookup[j]->getGroup()); } } // Allocate memory for thread data. treeSharedData* tempSum = new treeSharedData(m, lines[i].start, lines[i].end, Estimators, newLookup); pDataArray.push_back(tempSum); processIDS.push_back(i); hThreadArray[i-1] = CreateThread(NULL, 0, MyTreeSharedThreadFunction, pDataArray[i-1], 0, &dwThreadIdArray[i-1]); } //parent do your part driver(thisItersLookup, lines[0].start, lines[0].end, calcDists); //Wait until all threads have terminated. WaitForMultipleObjects(processors-1, hThreadArray, TRUE, INFINITE); //Close all thread handles and free memory allocations. for(int i=0; i < pDataArray.size(); i++){ if (pDataArray[i]->count != (pDataArray[i]->end-pDataArray[i]->start)) { m->mothurOut("[ERROR]: process " + toString(i) + " only processed " + toString(pDataArray[i]->count) + " of " + toString(pDataArray[i]->end-pDataArray[i]->start) + " groups assigned to it, quitting. \n"); m->control_pressed = true; } for (int j = 0; j < pDataArray[i]->thisLookup.size(); j++) { delete pDataArray[i]->thisLookup[j]; } for (int k = 0; k < calcDists.size(); k++) { int size = pDataArray[i]->calcDists[k].size(); for (int j = 0; j < size; j++) { calcDists[k].push_back(pDataArray[i]->calcDists[k][j]); } } CloseHandle(hThreadArray[i]); delete pDataArray[i]; } #endif } calcDistsTotals.push_back(calcDists); if (subsample) { //clean up memory for (int i = 0; i < thisItersLookup.size(); i++) { delete thisItersLookup[i]; } thisItersLookup.clear(); for (int i = 0; i < calcDists.size(); i++) { calcDists[i].clear(); } } if (m->debug) { m->mothurOut("[DEBUG]: iter = " + toString(thisIter) + ".\n"); } } if (m->debug) { m->mothurOut("[DEBUG]: done with iters.\n"); } if (iters != 1) { //we need to find the average distance and standard deviation for each groups distance vector< vector<seqDist> > calcAverages = m->getAverages(calcDistsTotals); if (m->debug) { m->mothurOut("[DEBUG]: found averages.\n"); } //create average tree for each calc for (int i = 0; i < calcDists.size(); i++) { vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { matrix[k].resize(thisLookup.size(), 0.0); } for (int j = 0; j < calcAverages[i].size(); j++) { int row = calcAverages[i][j].seq1; int column = calcAverages[i][j].seq2; float dist = calcAverages[i][j].dist; matrix[row][column] = dist; matrix[column][row] = dist; } //create a new filename map<string, string> variables; variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(inputfile)); variables["[calc]"] = treeCalculators[i]->getName(); variables["[distance]"] = thisLookup[0]->getLabel(); variables["[tag]"] = "ave"; string outputFile = getOutputFileName("tree",variables); outputNames.push_back(outputFile); outputTypes["tree"].push_back(outputFile); //creates tree from similarity matrix and write out file Tree* newTree = createTree(matrix); if (newTree != NULL) { writeTree(outputFile, newTree); } } if (m->debug) { m->mothurOut("[DEBUG]: done averages trees.\n"); } //create all trees for each calc and find their consensus tree for (int i = 0; i < calcDists.size(); i++) { if (m->control_pressed) { break; } //create a new filename //create a new filename map<string, string> variables; variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(inputfile)); variables["[calc]"] = treeCalculators[i]->getName(); variables["[distance]"] = thisLookup[0]->getLabel(); variables["[tag]"] = "all"; string outputFile = getOutputFileName("tree",variables); outputNames.push_back(outputFile); outputTypes["tree"].push_back(outputFile); ofstream outAll; m->openOutputFile(outputFile, outAll); vector<Tree*> trees; for (int myIter = 0; myIter < iters; myIter++) { if(m->control_pressed) { break; } //initialize matrix vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { matrix[k].resize(thisLookup.size(), 0.0); } for (int j = 0; j < calcDistsTotals[myIter][i].size(); j++) { int row = calcDistsTotals[myIter][i][j].seq1; int column = calcDistsTotals[myIter][i][j].seq2; double dist = calcDistsTotals[myIter][i][j].dist; matrix[row][column] = dist; matrix[column][row] = dist; } //creates tree from similarity matrix and write out file Tree* newTree = createTree(matrix); if (newTree != NULL) { newTree->print(outAll); trees.push_back(newTree); } } outAll.close(); if (m->control_pressed) { for (int k = 0; k < trees.size(); k++) { delete trees[k]; } } if (m->debug) { m->mothurOut("[DEBUG]: done all trees.\n"); } Consensus consensus; //clear old tree names if any m->Treenames.clear(); m->Treenames = m->getGroups(); //may have changed if subsample eliminated groups Tree* conTree = consensus.getTree(trees); if (m->debug) { m->mothurOut("[DEBUG]: done cons tree.\n"); } //create a new filename variables["[tag]"] = "cons"; string conFile = getOutputFileName("tree",variables); outputNames.push_back(conFile); outputTypes["tree"].push_back(conFile); ofstream outTree; m->openOutputFile(conFile, outTree); if (conTree != NULL) { conTree->print(outTree, "boot"); delete conTree; } } }else { for (int i = 0; i < calcDists.size(); i++) { if (m->control_pressed) { break; } //initialize matrix vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisLookup.size()); for (int k = 0; k < thisLookup.size(); k++) { matrix[k].resize(thisLookup.size(), 0.0); } for (int j = 0; j < calcDists[i].size(); j++) { int row = calcDists[i][j].seq1; int column = calcDists[i][j].seq2; double dist = calcDists[i][j].dist; matrix[row][column] = dist; matrix[column][row] = dist; } //create a new filename map<string, string> variables; variables["[filename]"] = outputDir + m->getRootName(m->getSimpleName(inputfile)); variables["[calc]"] = treeCalculators[i]->getName(); variables["[distance]"] = thisLookup[0]->getLabel(); variables["[tag]"] = ""; string outputFile = getOutputFileName("tree",variables); outputNames.push_back(outputFile); outputTypes["tree"].push_back(outputFile); //creates tree from similarity matrix and write out file Tree* newTree = createTree(matrix); if (newTree != NULL) { writeTree(outputFile, newTree); delete newTree; } } } return 0; } catch(exception& e) { m->errorOut(e, "TreeGroupCommand", "process"); exit(1); } }
//********************************************************************************************************************** int SummaryCommand::process(SAbundVector*& sabund, ofstream& outputFileHandle, ofstream& outAve) { try { //calculator -> data -> values vector< vector< vector<double> > > results; results.resize(sumCalculators.size()); outputFileHandle << sabund->getLabel(); SubSample sample; for (int thisIter = 0; thisIter < iters+1; thisIter++) { SAbundVector* thisIterSabund = sabund; //we want the summary results for the whole dataset, then the subsampling if ((thisIter > 0) && subsample) { //subsample sabund and run it //copy sabund since getSample destroys it RAbundVector rabund = sabund->getRAbundVector(); SAbundVector* newSabund = new SAbundVector(); *newSabund = rabund.getSAbundVector(); sample.getSample(newSabund, subsampleSize); thisIterSabund = newSabund; } for(int i=0; i<sumCalculators.size(); i++) { vector<double> data = sumCalculators[i]->getValues(thisIterSabund); if (m->control_pressed) { return 0; } if (thisIter == 0) { outputFileHandle << '\t'; sumCalculators[i]->print(outputFileHandle); } else { //some of the calc have hci and lci need to make room for that if (results[i].size() == 0) { results[i].resize(data.size()); } //save results for ave and std. for (int j = 0; j < data.size(); j++) { if (m->control_pressed) { return 0; } results[i][j].push_back(data[j]); } } } //cleanup memory if ((thisIter > 0) && subsample) { delete thisIterSabund; } } outputFileHandle << endl; if (subsample) { outAve << sabund->getLabel() << '\t' << "ave\t"; //find ave and std for this label and output //will need to modify the createGroupSummary to combine results and not mess with the .summary file. //calcs -> values vector< vector<double> > calcAverages; calcAverages.resize(sumCalculators.size()); for (int i = 0; i < calcAverages.size(); i++) { calcAverages[i].resize(results[i].size(), 0); } for (int thisIter = 0; thisIter < iters; thisIter++) { //sum all groups dists for each calculator for (int i = 0; i < calcAverages.size(); i++) { //initialize sums to zero. for (int j = 0; j < calcAverages[i].size(); j++) { calcAverages[i][j] += results[i][j][thisIter]; } } } for (int i = 0; i < calcAverages.size(); i++) { //finds average. for (int j = 0; j < calcAverages[i].size(); j++) { calcAverages[i][j] /= (float) iters; outAve << calcAverages[i][j] << '\t'; } } //find standard deviation vector< vector<double> > stdDev; stdDev.resize(sumCalculators.size()); for (int i = 0; i < stdDev.size(); i++) { stdDev[i].resize(results[i].size(), 0); } for (int thisIter = 0; thisIter < iters; thisIter++) { //compute the difference of each dist from the mean, and square the result of each for (int i = 0; i < stdDev.size(); i++) { for (int j = 0; j < stdDev[i].size(); j++) { stdDev[i][j] += ((results[i][j][thisIter] - calcAverages[i][j]) * (results[i][j][thisIter] - calcAverages[i][j])); } } } outAve << endl << sabund->getLabel() << '\t' << "std\t"; for (int i = 0; i < stdDev.size(); i++) { //finds average. for (int j = 0; j < stdDev[i].size(); j++) { stdDev[i][j] /= (float) iters; stdDev[i][j] = sqrt(stdDev[i][j]); outAve << stdDev[i][j] << '\t'; } } outAve << endl; } return 0; } catch(exception& e) { m->errorOut(e, "SummaryCommand", "process"); exit(1); } }
int process(treeSharedData* params) { try{ ValidCalculators validCalculator; vector<Calculator*> treeCalculators; for (int i=0; i<params->Estimators.size(); i++) { if (validCalculator.isValidCalculator("treegroup", params->Estimators[i]) ) { if (params->Estimators[i] == "sharedsobs") { treeCalculators.push_back(new SharedSobsCS()); }else if (params->Estimators[i] == "sharedchao") { treeCalculators.push_back(new SharedChao1()); }else if (params->Estimators[i] == "sharedace") { treeCalculators.push_back(new SharedAce()); }else if (params->Estimators[i] == "jabund") { treeCalculators.push_back(new JAbund()); }else if (params->Estimators[i] == "sorabund") { treeCalculators.push_back(new SorAbund()); }else if (params->Estimators[i] == "jclass") { treeCalculators.push_back(new Jclass()); }else if (params->Estimators[i] == "sorclass") { treeCalculators.push_back(new SorClass()); }else if (params->Estimators[i] == "jest") { treeCalculators.push_back(new Jest()); }else if (params->Estimators[i] == "sorest") { treeCalculators.push_back(new SorEst()); }else if (params->Estimators[i] == "thetayc") { treeCalculators.push_back(new ThetaYC()); }else if (params->Estimators[i] == "thetan") { treeCalculators.push_back(new ThetaN()); }else if (params->Estimators[i] == "kstest") { treeCalculators.push_back(new KSTest()); }else if (params->Estimators[i] == "sharednseqs") { treeCalculators.push_back(new SharedNSeqs()); }else if (params->Estimators[i] == "ochiai") { treeCalculators.push_back(new Ochiai()); }else if (params->Estimators[i] == "anderberg") { treeCalculators.push_back(new Anderberg()); }else if (params->Estimators[i] == "kulczynski") { treeCalculators.push_back(new Kulczynski()); }else if (params->Estimators[i] == "kulczynskicody") { treeCalculators.push_back(new KulczynskiCody()); }else if (params->Estimators[i] == "lennon") { treeCalculators.push_back(new Lennon()); }else if (params->Estimators[i] == "morisitahorn") { treeCalculators.push_back(new MorHorn()); }else if (params->Estimators[i] == "braycurtis") { treeCalculators.push_back(new BrayCurtis()); }else if (params->Estimators[i] == "whittaker") { treeCalculators.push_back(new Whittaker()); }else if (params->Estimators[i] == "odum") { treeCalculators.push_back(new Odum()); }else if (params->Estimators[i] == "canberra") { treeCalculators.push_back(new Canberra()); }else if (params->Estimators[i] == "structeuclidean") { treeCalculators.push_back(new StructEuclidean()); }else if (params->Estimators[i] == "structchord") { treeCalculators.push_back(new StructChord()); }else if (params->Estimators[i] == "hellinger") { treeCalculators.push_back(new Hellinger()); }else if (params->Estimators[i] == "manhattan") { treeCalculators.push_back(new Manhattan()); }else if (params->Estimators[i] == "structpearson") { treeCalculators.push_back(new StructPearson()); }else if (params->Estimators[i] == "soergel") { treeCalculators.push_back(new Soergel()); }else if (params->Estimators[i] == "spearman") { treeCalculators.push_back(new Spearman()); }else if (params->Estimators[i] == "structkulczynski") { treeCalculators.push_back(new StructKulczynski()); }else if (params->Estimators[i] == "speciesprofile") { treeCalculators.push_back(new SpeciesProfile()); }else if (params->Estimators[i] == "hamming") { treeCalculators.push_back(new Hamming()); }else if (params->Estimators[i] == "structchi2") { treeCalculators.push_back(new StructChi2()); }else if (params->Estimators[i] == "gower") { treeCalculators.push_back(new Gower()); }else if (params->Estimators[i] == "memchi2") { treeCalculators.push_back(new MemChi2()); }else if (params->Estimators[i] == "memchord") { treeCalculators.push_back(new MemChord()); }else if (params->Estimators[i] == "memeuclidean") { treeCalculators.push_back(new MemEuclidean()); }else if (params->Estimators[i] == "mempearson") { treeCalculators.push_back(new MemPearson()); }else if (params->Estimators[i] == "jsd") { treeCalculators.push_back(new JSD()); }else if (params->Estimators[i] == "rjsd") { treeCalculators.push_back(new RJSD()); } } } //if the users entered no valid calculators don't execute command if (treeCalculators.size() == 0) { params->m->mothurOut("You have given no valid calculators.\n"); return 0; } params->Estimators.clear(); for (int i=0; i<treeCalculators.size(); i++) { params->Estimators.push_back(treeCalculators[i]->getName()); } vector< vector<seqDist> > calcDists; calcDists.resize(treeCalculators.size()); SubSample sample; for (int thisIter = 0; thisIter < params->numIters; thisIter++) { SharedRAbundVectors* thisItersLookup = new SharedRAbundVectors(*params->thisLookup); vector<string> namesOfGroups = thisItersLookup->getNamesGroups(); if ((params->subsample && (!params->mainThread)) || (params->mainThread && (thisIter != 0) ) ) { if (params->withReplacement) { sample.getSampleWithReplacement(thisItersLookup, params->subsampleSize); } else { sample.getSample(thisItersLookup, params->subsampleSize); } } vector<SharedRAbundVector*> thisItersRabunds = thisItersLookup->getSharedRAbundVectors(); vector<string> thisItersGroupNames = params->thisLookup->getNamesGroups(); driverTreeShared(thisItersRabunds, calcDists, treeCalculators, params->m); for (int i = 0; i < thisItersRabunds.size(); i++) { delete thisItersRabunds[i]; } if ((params->subsample && (!params->mainThread)) || (params->mainThread && (thisIter != 0) ) ){ if((thisIter+1) % 100 == 0){ params->m->mothurOutJustToScreen(toString(thisIter+1)+"\n"); } params->calcDistsTotals.push_back(calcDists); for (int i = 0; i < calcDists.size(); i++) { for (int j = 0; j < calcDists[i].size(); j++) { if (params->m->getDebug()) { params->m->mothurOut("[DEBUG]: Results: iter = " + toString(thisIter) + ", " + thisItersGroupNames[calcDists[i][j].seq1] + " - " + thisItersGroupNames[calcDists[i][j].seq2] + " distance = " + toString(calcDists[i][j].dist) + ".\n"); } } } }else { //print results for whole dataset for (int i = 0; i < calcDists.size(); i++) { if (params->m->getControl_pressed()) { break; } //initialize matrix vector< vector<double> > matrix; //square matrix to represent the distance matrix.resize(thisItersLookup->size()); for (int k = 0; k < thisItersLookup->size(); k++) { matrix[k].resize(thisItersLookup->size(), 0.0); } for (int j = 0; j < calcDists[i].size(); j++) { int row = calcDists[i][j].seq1; int column = calcDists[i][j].seq2; double dist = calcDists[i][j].dist; matrix[row][column] = -(dist-1.0); matrix[column][row] = -(dist-1.0); } params->matrices.push_back(matrix); } } for (int i = 0; i < calcDists.size(); i++) { calcDists[i].clear(); } delete thisItersLookup; } if((params->numIters) % 100 != 0){ params->m->mothurOutJustToScreen(toString(params->numIters)+"\n"); } for (int i=0; i<treeCalculators.size(); i++) { delete treeCalculators[i]; } return 0; } catch(exception& e) { params->m->errorOut(e, "TreeGroupCommand", "process"); exit(1); } }