int runnestedind() { TTree *t = create(); t->SetScanField(0); t->Scan("type[]:type[sonind[]]","type[]==3"); TH1I* hgood = new TH1I("hgood","works",10,0,10); TH1I* hbad = new TH1I("hbad","used to fail",10,0,10); TCanvas *c = new TCanvas("c1"); c->Divide(1,2); c->cd(1); t->Draw("type[sonind[]]>>hbad","type[]==3"); c->cd(2); t->Draw("type[sonind[]]>>hgood","type[]==3 && sonind[]>=0"); if (hgood->GetMean()!=hbad->GetMean()) { cout << "Drawing \"type[sonind[]]>>hbad\",\"type[]==3\" failed!\n"; return 1; } #ifdef ClingWorkAroundErracticValuePrinter printf("(int)0\n"); #endif return 0; }
void NewCosmicstest(){ //gROOT->Reset(); TStopwatch *clock0 = new TStopwatch(); TFile *fout = new TFile("Cosmictest.root","RECREATE"); bool high = 1; //Float_t z0 = 1400; Float_t z0 = 0; Float_t yTop = 600; Float_t xTop = 300; Float_t zTop = 3650; Float_t xdist = 3000; Float_t zdist = 9000; TH2D *StartXZ = new TH2D("xz","xz;x[cm];z[cm]",30,-(xdist/2),xdist/2,90,z0 - 4500,z0 + 4500); TH1D *StartTheta = new TH1D("#theta","#theta; #theta_Zenith",100,0,2); TH1D *StartPhi = new TH1D("#phi","#phi; #phi",50,0,7); TH1D *StartPHigh = new TH1D("PHigh","P; P[GeV]",100,-1,3); TH1D *StartP = new TH1D("P","P;P[GeV]",100,-1,3); TH1D *StartPLow = new TH1D("PLow","P;P[GeV]",100,-1,3); //TH1D *StartP = new TH1D("P","P;P[GeV]",100,0.1,1000); BinLogX(StartP); BinLogX(StartPHigh); BinLogX(StartPLow); TH2D *StartPTheta = new TH2D("P,Theta","P-Theta;P[GeV];#theta",150,-1,3,50,0,2); BinLogX(StartPTheta); TH2D *MCXZ = new TH2D("MCxz","xz;x[cm];z[cm]",30,-(xdist/2),xdist/2,90,z0 - 4500,z0 + 4500); TH1D *MCTheta = new TH1D("MC#theta","#theta; #theta",100,0,2); TH1D *MCPhi = new TH1D("MC#phi","#phi, #phi",50,0,7); TH1I *MCnTry = new TH1I("nTry","nTry",100,4.6,5); Double_t totalweightsum=0; Double_t px,py,pz,x,y,z,w, weighttest, weight; Int_t nTry,nInside,nEvent,nTest; Co3Rng *fRandomEngine = new Co3Rng(); int EVENTS = 400000; Int_t kmax = 40000; float weight1,weight1Low,weight1High; weight1Low = 123*xdist*zdist/EVENTS/10000; // expected #muons per spill/ #simulated events per spill 174*30*90/500000 cout<<weight1Low<<endl; double I = fRandomEngine->fSpectrumH->Integral(100,1000); weight1High = 2*TMath::Pi()/3*I*xdist*zdist/EVENTS/10000; //weight2 = 900/I; // 1/(mean momentum weight), P_max-P_min/(3*0.3044/2pi) cout<< weight1High<<endl; Float_t weight3 = 4.833931503; // MC average of nTry/nEvents 4.833949997 +- 0.000010494 weight1 = 1; weight = weight1 / weight3; nInside = 0; nEvent = 0; nTest = 0; weighttest = 0; y = 1900; //20m over beam axis w = weight/kmax; clock0->Start(); for(Int_t k = 0;k<kmax;k++){ cout<<k<<endl; nTry =0; for(Int_t i=0;i<EVENTS;i++){ Bool_t hit = 0; do{ // shower characteristics double phi = fRandomEngine->Uniform(0,2*TMath::Pi()); double theta = fRandomEngine->fTheta->GetRandom(); //momentum components px = TMath::Sin(phi)*TMath::Sin(theta); pz = TMath::Cos(phi)*TMath::Sin(theta); py = -TMath::Cos(theta); // start position, area 1120m^2 x = fRandomEngine->Uniform(-xdist/2,xdist/2); z = fRandomEngine->Uniform(z0 - zdist/2, z0 + zdist/2); // claim for flight close to the actual detector if((abs(x-(y+yTop)*px/py) < xTop && abs(z-z0-(y+yTop)*pz/py) < zTop) || (abs(x-(y-yTop)*px/py) < xTop && abs(z-z0-(y-yTop)*pz/py) < zTop)|| abs(y-(x+xTop)*py/px)<yTop && abs(z-z0-(x+xTop)*pz/px)<zTop || abs(y-(x-xTop)*py/px)<yTop && abs(z-z0-(x-xTop)*pz/px)<zTop){ // muon momentum double P; //if (!high) {P = fRandomEngine->NEWstest(theta);} //else {P = fRandomEngine->fSpectrumH->GetRandom();} // high P = fRandomEngine->fSpectrumH->GetRandom(); w = weight1High/weight3/kmax; StartP->Fill(P,w); StartPHigh->Fill(P,w); StartPTheta->Fill(P,theta,w); // low P = fRandomEngine->NEWstest(theta); w = weight1Low/weight3/kmax; StartP->Fill(P,w); StartPLow->Fill(P,w); StartPTheta->Fill(P,theta,w); px = px*P; py = py*P; pz = pz*P; //muon or anti-muon hit = 1; nInside++; // StartP->Fill(P,w); w = weight1Low/weight3/kmax + weight1High/weight3/kmax; StartTheta->Fill(theta,w); // kein Weight! StartPhi->Fill(phi,w); // kein Weight! StartXZ->Fill(x,z,w); // kein Weight! StartPTheta->Fill(P,theta,w); } nTry++; weighttest += w; MCTheta->Fill(theta,w); // kein Weight! MCPhi->Fill(phi,w); MCXZ->Fill(x,z,w); nTest++; }while(!hit); nEvent++; } MCnTry->Fill(1.0*nTry/EVENTS); } clock0->Stop(); delete fRandomEngine; cout<<nEvent<<" events have been generated."<<endl; cout<<"There is a total of "<<nInside<<"/"<<nTest<<" muons that passed close enough to the detector."<<endl; cout<<"Including the given weight this corresponds to "; cout<<kmax*weighttest/xdist/zdist*10000/123.3044<<" spills (1 spill = "<<xdist*zdist*123.3044/10000; cout<<" real cosmic muons = "<<EVENTS<<" simulated events)."<<endl; cout<<weighttest<<endl; clock0->Print(); Double_t meanflux = 0; Int_t binsum = 0; for (Int_t ix = 2; ix<29;ix++){ for (Int_t iz = 2; iz<89;iz++){ binsum++; meanflux += MCXZ->GetBinContent(ix,iz); } } cout<< "meanflux: "<<meanflux/binsum<<" "<< meanflux<<endl<<endl; printf("MCnTry: %.9f +- %.9f",MCnTry->GetMean(),MCnTry->GetMeanError()); cout<<endl<<endl; TCanvas *c1 = new TCanvas("c1","c1",400,400); c1->Divide(1,1); c1->cd(1); MCnTry->DrawCopy(); TCanvas *c4 = new TCanvas("c4","c4",400,400); c4->Divide(1,1); c4->cd(1); StartPTheta->DrawCopy("SURF2"); gPad->SetLogx(); //TCanvas *c2 = new TCanvas("c2","c2",400,400); //c2->Divide(1,1); //c2->cd(1); //gPad->SetLogy(); //wei->DrawCopy(); TCanvas *c3 = new TCanvas("c3","c3",1600,800); c3->Divide(4,2); c3->cd(1); StartXZ->DrawCopy("COLZ"); c3->cd(2); //MCP->SetLineColor(kGreen); // MCP->DrawCopy(); //StartP->DrawCopy(); //TF1 *fs = new TF1("fs",NEWs,1,100,2); //fs->FixParameter(0, 0); //fs->FixParameter(1, 500); //StartP->Add(fs,-1); StartP->DrawCopy(); //StartP->Fit(fs,"I"); // //fs->DrawCopy("SAME"); //gPad->SetLogy(); gPad->SetLogx(); c3->cd(3); MCTheta->SetLineColor(kGreen); MCTheta->DrawCopy(); StartTheta->DrawCopy("SAME"); //TF1 *f1 = new TF1("f1","[0]*cos(x)*cos(x)",1.57,3.14); //StartTheta->Fit(f1,"","",1.57,3.14); gPad->SetLogy(0); gPad->SetLogx(0); c3->cd(4); MCPhi->SetLineColor(kGreen); MCPhi->DrawCopy(); StartPhi->DrawCopy("SAME"); //TF1 *f1 = new TF1("f1","[0]*cos(x)*cos(x)",1.57,3.14); //StartTheta->Fit(f1,"","",1.57,3.14); gPad->SetLogy(0); gPad->SetLogx(0); c3->cd(5); MCXZ->DrawCopy("COLZ"); c3->cd(6); //MCP->Divide(StartP); // MCP->DrawCopy(); gPad->SetLogy(0); gPad->SetLogx(0); c3->cd(7); //MCTheta->Divide(StartTheta); MCTheta->DrawCopy(); gPad->SetLogy(); gPad->SetLogx(0); c3->cd(8); //MCPhi->Divide(StartPhi); MCPhi->DrawCopy(); gPad->SetLogy(0); gPad->SetLogx(0); c3->Update(); c3->SaveAs("Start.png"); StartXZ->Write(); StartTheta->Write(); StartPhi->Write(); StartP->Write(); StartPLow->Write(); StartPHigh->Write(); StartPTheta->Write(); MCXZ->Write(); MCTheta->Write(); MCPhi->Write(); MCnTry->Write(); fout ->Close(); }
void ExtractTrackBasedTiming(TString fileName = "hd_root.root", int runNumber = 10390, TString variation = "default", bool verbose = false,TString prefix = ""){ // set "prefix" in case you want to ship the txt files elsewhere... cout << "Performing Track Matched timing fits for File: " << fileName.Data() << " Run: " << runNumber << " Variation: " << variation.Data() << endl; ExtractTrackBasedTimingNS::thisFile = TFile::Open( fileName , "UPDATE"); if (ExtractTrackBasedTimingNS::thisFile == 0) { cout << "Unable to open file " << fileName.Data() << "...Exiting" << endl; return; } //We need the existing constants, The best we can do here is just read them from the file. vector<double> sc_tdc_time_offsets; vector<double> sc_fadc_time_offsets; vector<double> tof_tdc_time_offsets; vector<double> tof_fadc_time_offsets; vector<double> tagm_tdc_time_offsets; vector<double> tagm_fadc_time_offsets; vector<double> tagh_tdc_time_offsets; vector<double> tagh_fadc_time_offsets; vector<double> tagh_counter_quality; double sc_t_base_fadc, sc_t_base_tdc; double tof_t_base_fadc, tof_t_base_tdc; double bcal_t_base_fadc, bcal_t_base_tdc; double tagm_t_base_fadc, tagm_t_base_tdc; double tagh_t_base_fadc, tagh_t_base_tdc; double fdc_t_base_fadc, fdc_t_base_tdc; double fcal_t_base; double cdc_t_base; double RF_Period; cout << "Grabbing CCDB constants..." << endl; // Base times GetCCDBConstants1("/CDC/base_time_offset" ,runNumber, variation, cdc_t_base); GetCCDBConstants1("/FCAL/base_time_offset",runNumber, variation, fcal_t_base); GetCCDBConstants1("/PHOTON_BEAM/RF/beam_period",runNumber, variation, RF_Period); GetCCDBConstants2("/FDC/base_time_offset" ,runNumber, variation, fdc_t_base_fadc, fdc_t_base_tdc); GetCCDBConstants2("/BCAL/base_time_offset" ,runNumber, variation, bcal_t_base_fadc, bcal_t_base_tdc); GetCCDBConstants2("/PHOTON_BEAM/microscope/base_time_offset" ,runNumber, variation, tagm_t_base_fadc, tagm_t_base_tdc); GetCCDBConstants2("/PHOTON_BEAM/hodoscope/base_time_offset" ,runNumber, variation, tagh_t_base_fadc, tagh_t_base_tdc); GetCCDBConstants2("/START_COUNTER/base_time_offset" ,runNumber, variation, sc_t_base_fadc, sc_t_base_tdc); GetCCDBConstants2("/TOF/base_time_offset" ,runNumber, variation, tof_t_base_fadc, tof_t_base_tdc); // Per channel //GetCCDBConstants("/BCAL/TDC_offsets" ,runNumber, variation, bcal_tdc_offsets); //GetCCDBConstants("/FCAL/timing_offsets" ,runNumber, variation, fcal_adc_offsets); GetCCDBConstants("/START_COUNTER/adc_timing_offsets" ,runNumber, variation, sc_fadc_time_offsets); GetCCDBConstants("/START_COUNTER/tdc_timing_offsets" ,runNumber, variation, sc_tdc_time_offsets); GetCCDBConstants("/PHOTON_BEAM/microscope/fadc_time_offsets" ,runNumber, variation, tagm_fadc_time_offsets,3);// Interested in 3rd column GetCCDBConstants("/PHOTON_BEAM/microscope/tdc_time_offsets" ,runNumber, variation, tagm_tdc_time_offsets,3); GetCCDBConstants("/PHOTON_BEAM/hodoscope/fadc_time_offsets" ,runNumber, variation, tagh_fadc_time_offsets,2);// Interested in 2nd column GetCCDBConstants("/PHOTON_BEAM/hodoscope/tdc_time_offsets" ,runNumber, variation, tagh_tdc_time_offsets,2); GetCCDBConstants("/PHOTON_BEAM/hodoscope/counter_quality" ,runNumber, variation, tagh_counter_quality,2); GetCCDBConstants("/TOF/adc_timing_offsets",runNumber, variation, tof_fadc_time_offsets); GetCCDBConstants("/TOF/timing_offsets",runNumber, variation, tof_tdc_time_offsets); cout << "CDC base times = " << cdc_t_base << endl; cout << "FCAL base times = " << fcal_t_base << endl; cout << "FDC base times = " << fdc_t_base_fadc << ", " << fdc_t_base_tdc << endl; cout << "BCAL base times = " << bcal_t_base_fadc << ", " << bcal_t_base_tdc << endl; cout << "SC base times = " << sc_t_base_fadc << ", " << sc_t_base_tdc << endl; cout << "TOF base times = " << tof_t_base_fadc << ", " << tof_t_base_tdc << endl; cout << "TAGH base times = " << tagh_t_base_fadc << ", " << tagh_t_base_tdc << endl; cout << "TAGM base times = " << tagm_t_base_fadc << ", " << tagm_t_base_tdc << endl; cout << endl; cout << "RF_Period = " << RF_Period << endl; cout << endl; cout << "Done grabbing CCDB constants...Entering fits..." << endl; // Do our final step in the timing alignment with tracking //When the RF is present we can try to simply pick out the correct beam bucket for each of the runs //First just a simple check to see if we have the appropriate data bool useRF = false; TH1I *testHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TAGH_TDC_RF_Compare","Counter ID 001"); if (testHist != NULL){ // Not great since we rely on channel 1 working, but can be craftier later. cout << "Using RF Times for Calibration" << endl; useRF = true; } ofstream outFile; TH2I *thisHist; thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - SC Target Time"); if (useRF) thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - RFBunch Time"); if (thisHist != NULL){ //Statistics on these histograms are really quite low we will have to rebin and do some interpolation outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file int nBinsX = thisHist->GetNbinsX(); int nBinsY = thisHist->GetNbinsY(); TH1D * selectedTAGMOffset = new TH1D("selectedTAGMOffset", "Selected TAGM Offset; Column; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5); TH1I * TAGMOffsetDistribution = new TH1I("TAGMOffsetDistribution", "TAGM Offset; TAGM Offset [ns]; Entries", 500, -250, 250); for (int i = 1 ; i <= nBinsX; i++){ TH1D *projY = thisHist->ProjectionY("temp", i, i); // Scan over the histogram //chose the correct number of bins based on the histogram float nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX(); float timeWindow = 3; //ns (Full Width) int binWindow = int(timeWindow / nsPerBin); double maxEntries = 0; double maxMean = 0; for (int j = 1 ; j <= projY->GetNbinsX();j++){ int minBin = j; int maxBin = (j + binWindow) <= projY->GetNbinsX() ? (j + binWindow) : projY->GetNbinsX(); double sum = 0, nEntries = 0; for (int bin = minBin; bin <= maxBin; bin++){ sum += projY->GetBinContent(bin) * projY->GetBinCenter(bin); nEntries += projY->GetBinContent(bin); if (bin == maxBin){ if (nEntries > maxEntries) { maxMean = sum / nEntries; maxEntries = nEntries; } } } } //In the case there is RF, our job is to pick just the number of the correct beam bunch, so that's really all we need. if(useRF) { int beamBucket = int((maxMean / RF_Period) + 0.5); // +0.5 to handle rounding correctly selectedTAGMOffset->SetBinContent(i, beamBucket); TAGMOffsetDistribution->Fill(beamBucket); } else{ selectedTAGMOffset->SetBinContent(i, maxMean); TAGMOffsetDistribution->Fill(maxMean); } } double meanOffset = TAGMOffsetDistribution->GetMean(); // This might be in units of beam bunches, so we need to convert if (useRF) meanOffset *= RF_Period; if (verbose) { cout << "Dumping TAGM results...\n=======================================" << endl; cout << "TAGM mean Offset = " << meanOffset << endl; cout << "fADC Offsets" << endl; } outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out); //for (int i = 1 ; i <= nBinsX; i++){ // Loop over rows if (verbose) cout << "Column\tRow\tvalueToUse\toldValue\tmeanOffset\tTotal" << endl; for (unsigned int column = 1; column <= 102; column++){ int index = GetCCDBIndexTAGM(column, 0); double valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; //if (valueToUse == 0) valueToUse = meanOffset; outFile << "0 " << column << " " << valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset<< endl; if (verbose) printf("0\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", column, valueToUse, tagm_fadc_time_offsets[index-1], meanOffset, valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset); if (column == 9 || column == 27 || column == 81 || column == 99){ for (unsigned int row = 1; row <= 5; row++){ index = GetCCDBIndexTAGM(column, row); valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; //if (valueToUse == 0) valueToUse = meanOffset; outFile << row << " " << column << " " << valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset<< endl; if (verbose) printf("%i\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", row, column, valueToUse, tagm_fadc_time_offsets[index-1], meanOffset, valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset); } } } outFile.close(); if (verbose) { cout << "TDC Offsets" << endl; cout << "Column\tRow\tvalueToUse\toldValue\tmeanOffset\tTotal" << endl; } outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out); //for (int i = 1 ; i <= nBinsX; i++){ // Loop over rows for (unsigned int column = 1; column <= 102; column++){ int index = GetCCDBIndexTAGM(column, 0); double valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; //if (valueToUse == 0) valueToUse = meanOffset; outFile << "0 " << column << " " << valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset << endl; if (verbose) printf("0\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", column, valueToUse, tagm_tdc_time_offsets[index-1], meanOffset, valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset); if (column == 9 || column == 27 || column == 81 || column == 99){ for (unsigned int row = 1; row <= 5; row++){ index = GetCCDBIndexTAGM(column, row); valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; //if (valueToUse == 0) valueToUse = meanOffset; outFile << row << " " << column << " " << valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset << endl; if (verbose) printf("%i\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", row, column, valueToUse, tagm_tdc_time_offsets[index-1], meanOffset, valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset); } } } outFile.close(); outFile.open(prefix + "tagm_base_time.txt", ios::out); if (verbose) { printf("TAGM ADC Base = %f - (%f) = %f\n", tagm_t_base_fadc, meanOffset, tagm_t_base_fadc - meanOffset); printf("TAGM TDC Base = %f - (%f) = %f\n", tagm_t_base_tdc, meanOffset, tagm_t_base_tdc - meanOffset); } outFile << tagm_t_base_fadc - meanOffset << " " << tagm_t_base_tdc - meanOffset << endl; outFile.close(); } thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGH - SC Target Time"); if (useRF) thisHist = ExtractTrackBasedTimingNS::Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGH - RFBunch Time"); if (thisHist != NULL) { outFile.open(prefix + "tagh_tdc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file outFile.open(prefix + "tagh_adc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file // Setup histogram for determining the most probable change in offset for each F1TDC slot // This is needed to account for the occasional uniform shift in offsets of the 32 counters in a slot const int NtdcSlots = 8; TH1I * tdcDist[NtdcSlots]; for (int i = 1; i <= NtdcSlots; i++) { stringstream ss; ss << i; TString s = ss.str(); double range = 500.0; double width = 0.1; int Nbins = range/width; double low = -0.5*range - 0.5*width; double high = 0.5*range - 0.5*width; tdcDist[i-1] = new TH1I("TAGHOffsetDistribution_"+s, "TAGH Offset (slot "+s+"); TAGH Offset [ns]; Entries", Nbins, low, high); } int nBinsX = thisHist->GetNbinsX(); TH1D * selectedTAGHOffset = new TH1D("selectedTAGHOffset", "Selected TAGH Offset; ID; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5); for (int i = 1 ; i <= nBinsX; i++) { TH1D *projY = thisHist->ProjectionY("temp", i, i); // Scan over histogram to find mean offset in timeWindow with largest integral // Choose the correct number of bins based on the histogram double nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX(); double timeWindow = 2.0; // ns (Full Width) int binWindow = int(timeWindow / nsPerBin); double maxEntries = 0; double maxMean = 0; for (int j = 1; j <= projY->GetNbinsX(); j++) { int minBin = j; int maxBin = (j + binWindow) <= projY->GetNbinsX() ? (j + binWindow) : projY->GetNbinsX(); double sum = 0; double nEntries = 0; for (int bin = minBin; bin <= maxBin; bin++) { sum += projY->GetBinContent(bin) * projY->GetBinCenter(bin); nEntries += projY->GetBinContent(bin); if (bin == maxBin) { if (nEntries > maxEntries) { maxMean = sum / nEntries; maxEntries = nEntries; } } } } if (tagh_counter_quality[i-1] == 0.0) { selectedTAGHOffset->SetBinContent(i, 0); continue; } int tdc_slot = GetF1TDCslotTAGH(i); if (useRF) { int beamBucket; if (maxMean >= 0) beamBucket = int((maxMean / RF_Period) + 0.5); // +0.5 to handle rounding correctly else beamBucket = int((maxMean / RF_Period) - 0.5); selectedTAGHOffset->SetBinContent(i, beamBucket); if (maxEntries != 0.0) tdcDist[tdc_slot - 1]->Fill(beamBucket); } else { selectedTAGHOffset->SetBinContent(i, maxMean); if (maxEntries != 0.0) tdcDist[tdc_slot - 1]->Fill(maxMean); } } // Most probable change in offset or beam bucket per F1TDC slot double mpDelta[NtdcSlots]; for (int i = 1; i <= NtdcSlots; i++) { int mpBin = tdcDist[i-1]->GetMaximumBin(); mpDelta[i-1] = (mpBin > 0) ? tdcDist[i-1]->GetBinCenter(mpBin) : 0.0; if (useRF) mpDelta[i-1] *= RF_Period; if (verbose) { cout << "TAGH most probable Offset = " << i << ", " << mpDelta[i-1] << endl; } } if (verbose) { cout << "Dumping TAGH results...\n=======================================" << endl; cout << "Type\tChannel\tvalueToUse\toldValue\tmpDelta\tTotal" << endl; } double limit = 2.5; // ns double ccdb_sum = 0.0; for (int i = 1; i <= nBinsX; i++) ccdb_sum += tagh_tdc_time_offsets[i-1]; double c1_tdcOffset = 0.0; outFile.open(prefix + "tagh_tdc_timing_offsets.txt"); for (int i = 1; i <= nBinsX; i++) { if (tagh_counter_quality[i-1] == 0.0) { outFile << i << " " << 0 << endl; continue; } int tdc_slot = GetF1TDCslotTAGH(i); double delta = selectedTAGHOffset->GetBinContent(i); if (useRF) delta *= RF_Period; if (ccdb_sum > 0.0 && fabs(delta - mpDelta[tdc_slot-1]) > limit) { delta = mpDelta[tdc_slot-1]; } double ccdb = tagh_tdc_time_offsets[i-1]; double offset = ccdb + delta; if (i == 1) c1_tdcOffset = offset; offset -= c1_tdcOffset; outFile << i << " " << offset << endl; if (verbose) printf("TDC\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", i, delta, ccdb, mpDelta[tdc_slot-1], offset); } outFile.close(); ccdb_sum = 0.0; for (int i = 1; i <= nBinsX; i++) ccdb_sum += tagh_fadc_time_offsets[i-1]; double c1_adcOffset = 0.0; outFile.open(prefix + "tagh_adc_timing_offsets.txt"); for (int i = 1; i <= nBinsX; i++) { if (tagh_counter_quality[i-1] == 0.0) { outFile << i << " " << 0 << endl; continue; } int tdc_slot = GetF1TDCslotTAGH(i); double delta = selectedTAGHOffset->GetBinContent(i); if (useRF) delta *= RF_Period; if (ccdb_sum > 0.0 && fabs(delta - mpDelta[tdc_slot-1]) > limit) { delta = mpDelta[tdc_slot-1]; } double ccdb = tagh_fadc_time_offsets[i-1]; double offset = ccdb + delta; if (i == 1) c1_adcOffset = offset; offset -= c1_adcOffset; outFile << i << " " << offset << endl; if (verbose) printf("ADC\t%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n", i, delta, ccdb, mpDelta[tdc_slot-1], offset); } outFile.close(); outFile.open(prefix + "tagh_base_time.txt"); outFile << tagh_t_base_fadc - c1_adcOffset << " " << tagh_t_base_tdc - c1_tdcOffset << endl; if (verbose) { printf("TAGH ADC Base = %f - (%f) = %f\n", tagh_t_base_fadc, c1_adcOffset, tagh_t_base_fadc - c1_adcOffset); printf("TAGH TDC Base = %f - (%f) = %f\n", tagh_t_base_tdc, c1_tdcOffset, tagh_t_base_tdc - c1_tdcOffset); } outFile.close(); } // We can use the RF time to calibrate the SC time (Experimental for now) double meanSCOffset = 0.0; // In case we change the time of the SC, we need this in this scope if(useRF){ TH1F * selectedSCSectorOffset = new TH1F("selectedSCSectorOffset", "Selected TDC-RF offset;Sector; Time", 30, 0.5, 30.5); TH1F * selectedSCSectorOffsetDistribution = new TH1F("selectedSCSectorOffsetDistribution", "Selected TDC-RF offset;Time;Entries", 100, -3.0, 3.0); TF1* f = new TF1("f","pol0(0)+gaus(1)", -3.0, 3.0); for (int sector = 1; sector <= 30; sector++){ TH1I *scRFHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "SC_Target_RF_Compare", Form("Sector %.2i", sector)); if (scRFHist == NULL) continue; //Do the fit TFitResultPtr fr = scRFHist->Fit("pol0", "SQ", "", -2, 2); double p0 = fr->Parameter(0); f->FixParameter(0,p0); f->SetParLimits(2, -2, 2); f->SetParLimits(3, 0, 2); f->SetParameter(1, 10); f->SetParameter(2, scRFHist->GetBinCenter(scRFHist->GetMaximumBin())); f->SetParameter(3, 0); fr = scRFHist->Fit(f, "SQ", "", -2, 2); double SCOffset = fr->Parameter(2); selectedSCSectorOffset->SetBinContent(sector, SCOffset); selectedSCSectorOffsetDistribution->Fill(SCOffset); } // Now write out the offsets meanSCOffset = selectedSCSectorOffsetDistribution->GetMean(); if (verbose){ cout << "Dumping SC results...\n=======================================" << endl; cout << "SC mean Offset = " << meanSCOffset << endl; cout << "TDC Offsets" << endl; cout << "Sector\toldValue\tValueToUse\tmeanOffset\tTotal" << endl; } outFile.open(prefix + "sc_tdc_timing_offsets.txt"); for (int sector = 1; sector <= 30; sector++){ outFile << sc_tdc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset << endl; if (verbose) printf("%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n",sector, sc_tdc_time_offsets[sector-1], selectedSCSectorOffset->GetBinContent(sector), meanSCOffset, sc_tdc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset); } outFile.close(); if (verbose){ cout << "ADC Offsets" << endl; cout << "Sector\tvalueToUse\toldValue\tmeanOffset\tTotal" << endl; } outFile.open(prefix + "sc_adc_timing_offsets.txt"); for (int sector = 1; sector <= 30; sector++){ outFile << sc_fadc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset << endl; if (verbose) printf("%i\t%.3f\t\t%.3f\t\t%.3f\t\t%.3f\n",sector,sc_fadc_time_offsets[sector-1], selectedSCSectorOffset->GetBinContent(sector), meanSCOffset, sc_fadc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset); } outFile.close(); outFile.open(prefix + "sc_base_time.txt"); outFile << sc_t_base_fadc - meanSCOffset << " " << sc_t_base_tdc - meanSCOffset << endl; if (verbose) { printf("SC ADC Base = %f - (%f) = %f\n", sc_t_base_fadc, meanSCOffset, sc_t_base_fadc - meanSCOffset); printf("SC TDC Base = %f - (%f) = %f\n", sc_t_base_tdc, meanSCOffset, sc_t_base_tdc - meanSCOffset); } outFile.close(); } TH1I *this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TRACKING", "TOF - RF Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 1.5, maximum + 1.5); float mean = fr->Parameter(1); outFile.open(prefix + "tof_base_time.txt"); if (verbose) { printf("TOF ADC Base = %f - (%f) - (%f) = %f\n", tof_t_base_fadc, mean, meanSCOffset, tof_t_base_fadc - mean - meanSCOffset); printf("TOF TDC Base = %f - (%f) - (%f) = %f\n", tof_t_base_tdc, mean, meanSCOffset, tof_t_base_tdc - mean - meanSCOffset); } outFile << tof_t_base_fadc - mean - meanSCOffset<< " " << tof_t_base_tdc - mean - meanSCOffset<< endl; outFile.close(); } this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TRACKING", "BCAL - RF Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 5, maximum + 5); float mean = fr->Parameter(1); outFile.open(prefix + "bcal_base_time.txt"); if (verbose) { printf("BCAL ADC Base = %f - (%f) - (%f) = %f\n", bcal_t_base_fadc, mean, meanSCOffset, bcal_t_base_fadc - mean - meanSCOffset); printf("BCAL TDC Base = %f - (%f) - (%f) = %f\n", bcal_t_base_tdc, mean, meanSCOffset, bcal_t_base_tdc - mean - meanSCOffset); } outFile << bcal_t_base_fadc - mean - meanSCOffset << " " << bcal_t_base_tdc - mean - meanSCOffset << endl; // TDC info not used outFile.close(); } this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TRACKING", "FCAL - RF Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 5, maximum + 5); float mean = fr->Parameter(1); outFile.open(prefix + "fcal_base_time.txt"); if (verbose) { printf("FCAL ADC Base = %f - (%f) - (%f) = %f\n",fcal_t_base, mean, meanSCOffset, fcal_t_base - mean - meanSCOffset); } outFile << fcal_t_base - mean - meanSCOffset<< endl; outFile.close(); } this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TRACKING", "Earliest CDC Time Minus Matched SC Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 15, maximum + 10); float mean = fr->Parameter(1); outFile.open(prefix + "cdc_base_time.txt"); if (verbose) { printf("CDC ADC Base = %f - (%f) - (%f) = %f\n",cdc_t_base, mean, meanSCOffset, cdc_t_base - mean - meanSCOffset); } outFile << cdc_t_base - mean - meanSCOffset << endl; outFile.close(); } // We want to account for any residual difference between the cathode and anode times. double FDC_ADC_Offset = 0.0, FDC_TDC_Offset = 0.0; this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "FDC", "FDCHit Cathode time;1"); if(this1DHist != NULL){ Int_t firstBin = this1DHist->FindFirstBinAbove( 1 , 1); // Find first bin with content above 1 in the histogram for (int i = 0; i <= 16; i++){ if ((firstBin + i) > 0) this1DHist->SetBinContent((firstBin + i), 0); } //Fit a gaussian to the left of the main peak Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TF1 *f = new TF1("f", "gaus"); f->SetParameters(100, maximum, 20); //this1DHist->Rebin(2); TFitResultPtr fr = this1DHist->Fit(f, "S", "", maximum - 10, maximum + 7); // Cant fix value at end of range double mean = fr->Parameter(1); float sigma = fr->Parameter(2); FDC_ADC_Offset = mean; delete f; } this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "FDC", "FDCHit Wire time;1"); if(this1DHist != NULL){ Int_t firstBin = this1DHist->FindLastBinAbove( 1 , 1); // Find first bin with content above 1 in the histogram for (int i = 0; i <= 25; i++){ if ((firstBin + i) > 0) this1DHist->SetBinContent((firstBin + i), 0); } //Fit a gaussian to the left of the main peak Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TF1 *f = new TF1("f", "gaus"); f->SetParameters(100, maximum, 20); TFitResultPtr fr = this1DHist->Fit(f, "S", "", maximum - 10, maximum + 5); // Cant fix value at end of range double mean = fr->Parameter(1); float sigma = fr->Parameter(2); FDC_TDC_Offset = mean; delete f; } double FDC_ADC_TDC_Offset = FDC_ADC_Offset - FDC_TDC_Offset; this1DHist = ExtractTrackBasedTimingNS::Get1DHistogram("HLDetectorTiming", "TRACKING", "Earliest Flight-time Corrected FDC Time"); if(this1DHist != NULL){ //Landau Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("landau", "S", "", maximum - 2.5, maximum + 4); float MPV = fr->Parameter(1); outFile.open(prefix + "fdc_base_time.txt"); if (verbose) { printf("FDC ADC Base = %f - (%f) - (%f) - (%f) = %f\n",fdc_t_base_fadc, MPV, meanSCOffset, FDC_ADC_TDC_Offset, fdc_t_base_fadc - MPV - meanSCOffset - FDC_ADC_TDC_Offset); printf("FDC TDC Base = %f - (%f) - (%f) = %f\n",fdc_t_base_tdc, MPV, meanSCOffset, fdc_t_base_tdc - MPV - meanSCOffset); } outFile << fdc_t_base_fadc - MPV - meanSCOffset - FDC_ADC_TDC_Offset << " " << fdc_t_base_tdc - MPV - meanSCOffset << endl; outFile.close(); } ExtractTrackBasedTimingNS::thisFile->Write(); return; }
void ExtractTrackBasedTiming(int runNumber){ TString fileName = Form ("Run%i/TrackBasedTiming.root", runNumber); TString prefix = Form ("Run%i/constants/TrackBasedTiming/",runNumber); TString inputPrefix = Form ("Run%i/constants/TDCADCTiming/",runNumber); thisFile = TFile::Open( fileName , "UPDATE"); if (thisFile == 0) { cout << "Unable to open file " << fileName.Data() << "...Exiting" << endl; return; } //We need the existing constants, The best we can do here is just read them from the file. vector<double> sc_tdc_time_offsets; vector<double> sc_fadc_time_offsets; vector<double> tof_tdc_time_offsets; vector<double> tof_fadc_time_offsets; vector<double> tagm_tdc_time_offsets; vector<double> tagm_fadc_time_offsets; vector<double> tagh_tdc_time_offsets; vector<double> tagh_fadc_time_offsets; double sc_t_base_fadc; double sc_t_base_tdc; double tof_t_base_fadc; double tof_t_base_tdc; double bcal_t_base_fadc; double bcal_t_base_tdc; double tagm_t_base_fadc; double tagm_t_base_tdc; double tagh_t_base_fadc; double tagh_t_base_tdc; double fcal_t_base; double cdc_t_base; ifstream inFile; inFile.open(inputPrefix + "sc_tdc_timing_offsets.txt"); string line; if (inFile.is_open()){ while (getline (inFile, line)){ sc_tdc_time_offsets.push_back(atof(line.data())); } } inFile.close(); ifstream inFile; inFile.open(inputPrefix + "sc_adc_timing_offsets.txt"); string line; if (inFile.is_open()){ while (getline (inFile, line)){ sc_fadc_time_offsets.push_back(atof(line.data())); } } inFile.close(); inFile.open(inputPrefix + "tof_tdc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ tof_tdc_time_offsets.push_back(atof(line.data())); } } inFile.close(); inFile.open(inputPrefix + "tof_adc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ tof_fadc_time_offsets.push_back(atof(line.data())); } } inFile.close(); inFile.open(inputPrefix + "tagm_tdc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double r, c, offset; while (iss>>r>>c>>offset){ //if (row != 0) continue; tagm_tdc_time_offsets.push_back(offset); } } } inFile.close(); inFile.open(inputPrefix + "tagm_adc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double r, c, offset; while (iss>>r>>c>>offset){ //if (row != 0) continue; tagm_fadc_time_offsets.push_back(offset); } } } inFile.close(); inFile.open(inputPrefix + "tagh_tdc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double counter, offset; while (iss>>counter>>offset){ tagh_tdc_time_offsets.push_back(offset); } } } inFile.close(); inFile.open(inputPrefix + "tagh_adc_timing_offsets.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double counter, offset; while (iss>>counter>>offset){ tagh_fadc_time_offsets.push_back(offset); } } } inFile.close(); inFile.open(inputPrefix + "tof_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); iss>>tof_t_base_fadc>>tof_t_base_tdc; } } inFile.close(); inFile.open(inputPrefix + "sc_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); iss>>sc_t_base_fadc>>sc_t_base_tdc; } } inFile.close(); inFile.open(inputPrefix + "bcal_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double adc_offset, tdc_offset; iss>>adc_offset>>tdc_offset; // TDC not used currently bcal_t_base_fadc = adc_offset; bcal_t_base_tdc = tdc_offset; } } inFile.close(); inFile.open(inputPrefix + "tagm_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double adc_offset, tdc_offset; iss>>adc_offset>>tdc_offset; // TDC not used currently tagm_t_base_fadc = adc_offset; tagm_t_base_tdc = tdc_offset; } } inFile.close(); inFile.open(inputPrefix + "tagh_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); double adc_offset, tdc_offset; iss>>adc_offset>>tdc_offset; // TDC not used currently tagh_t_base_fadc = adc_offset; tagh_t_base_tdc = tdc_offset; } } inFile.close(); inFile.open(inputPrefix + "fcal_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); iss>>fcal_t_base; } } inFile.close(); inFile.open(inputPrefix + "cdc_base_time.txt"); if (inFile.is_open()){ while (getline (inFile, line)){ istringstream iss(line); iss>>cdc_t_base; } } inFile.close(); // Do our final step in the timing alignment with tracking //When the RF is present we can try to simply pick out the correct beam bucket for each of the runs //First just a simple check to see if we have the appropriate data bool useRF = false; double RF_Period = 4.0080161; TH1I *testHist = Get1DHistogram("HLDetectorTiming", "TAGH_TDC_RF_Compare","Counter ID 001"); if (testHist != NULL){ // Not great since we rely on channel 1 working, but can be craftier later. useRF = true; } ofstream outFile; TH2I *thisHist; thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - SC Target Time"); if (useRF) thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGM - RFBunch Time"); if (thisHist != NULL){ //Statistics on these histograms are really quite low we will have to rebin and do some interpolation outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file int nBinsX = thisHist->GetNbinsX(); int nBinsY = thisHist->GetNbinsY(); TH1D * selectedTAGMOffset = new TH1D("selectedTAGMOffset", "Selected TAGM Offset; Column; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5); TH1I * TAGMOffsetDistribution = new TH1I("TAGMOffsetDistribution", "TAGM Offset; TAGM Offset [ns]; Entries", 500, -250, 250); for (int i = 1 ; i <= nBinsX; i++){ TH1D *projY = thisHist->ProjectionY("temp", i, i); // Scan over the histogram //chose the correct number of bins based on the histogram float nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX(); float timeWindow = 3; //ns (Full Width) int binWindow = int(timeWindow / nsPerBin); double maxEntries = 0; double maxMean = 0; for (int j = 1 ; j <= projY->GetNbinsX();j++){ int minBin = j; int maxBin = (j + binWindow) <= projY->GetNbinsX() ? (j + binWindow) : projY->GetNbinsX(); double sum = 0, nEntries = 0; for (int bin = minBin; bin <= maxBin; bin++){ sum += projY->GetBinContent(bin) * projY->GetBinCenter(bin); nEntries += projY->GetBinContent(bin); if (bin == maxBin){ if (nEntries > maxEntries) { maxMean = sum / nEntries; maxEntries = nEntries; } } } } //In the case there is RF, our job is to pick just the number of the correct beam bunch, so that's really all we need. if(useRF) { int beamBucket = int((maxMean / RF_Period) + 0.5); // +0.5 to handle rounding correctly selectedTAGMOffset->SetBinContent(i, beamBucket); TAGMOffsetDistribution->Fill(beamBucket); } else{ selectedTAGMOffset->SetBinContent(i, maxMean); TAGMOffsetDistribution->Fill(maxMean); } } /* if (!useRF){ //TFitResultPtr fr1 = selectedTAGMOffset->Fit("pol1", "SQ", "", 0.5, nBinsX + 0.5); TFitResultPtr fr1 = selectedTAGMOffset->Fit("pol1", "SQ", "", 5, 50); for (int i = 1 ; i <= nBinsX; i++){ double x0 = fr1->Parameter(0); double x1 = fr1->Parameter(1); //double x2 = fr1->Parameter(2); //double fitResult = x0 + i*x1 + i*i*x2; double fitResult = x0 + i*x1; double outlierCut = 20; double valueToUse = selectedTAGMOffset->GetBinContent(i); if (fabs(selectedTAGMOffset->GetBinContent(i) - fitResult) > outlierCut && valueToUse != 0.0){ valueToUse = fitResult; } selectedTAGMOffset->SetBinContent(i, valueToUse); if (valueToUse != 0 ) TAGMOffsetDistribution->Fill(valueToUse); } } */ double meanOffset = TAGMOffsetDistribution->GetMean(); // This might be in units of beam bunches, so we need to convert if (useRF) meanOffset *= RF_Period; /* for (int i = 1 ; i <= nBinsX; i++){ double valueToUse = selectedTAGMOffset->GetBinContent(i); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out | ios::app); outFile << "0 " << i << " " << valueToUse + tagm_tdc_time_offsets[i-1] - meanOffset<< endl; if (i == 7 || i == 25 || i == 79 || i == 97){ for(int j = 1; j <= 5; j++){ outFile << j << " " << i << " " << valueToUse + tagm_tdc_time_offsets[i-1] - meanOffset<< endl; } } outFile.close(); // Apply the same shift to the adc offsets outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out | ios::app); outFile << "0 " << i << " " << valueToUse + tagm_fadc_time_offsets[i-1] - meanOffset<< endl; if (i == 7 || i == 25 || i == 79 || i == 97){ for(int j = 1; j <= 5; j++){ outFile << j << " " << i << " " << valueToUse + tagm_fadc_time_offsets[i-1] - meanOffset<< endl; } } outFile.close(); } */ outFile.open(prefix + "tagm_adc_timing_offsets.txt", ios::out); //for (int i = 1 ; i <= nBinsX; i++){ // Loop over rows for (unsigned int column = 1; column <= 102; column++){ int index = GetCCDBIndexTAGM(column, 0); double valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile << "0 " << column << " " << valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset<< endl; if (column == 9 || column == 27 || column == 81 || column == 99){ for (unsigned int row = 1; row <= 5; row++){ index = GetCCDBIndexTAGM(column, row); valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile << row << " " << column << " " << valueToUse + tagm_fadc_time_offsets[index-1] - meanOffset<< endl; } } } outFile.close(); outFile.open(prefix + "tagm_tdc_timing_offsets.txt", ios::out); //for (int i = 1 ; i <= nBinsX; i++){ // Loop over rows for (unsigned int column = 1; column <= 102; column++){ int index = GetCCDBIndexTAGM(column, 0); double valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile << "0 " << column << " " << valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset << endl; if (column == 9 || column == 27 || column == 81 || column == 99){ for (unsigned int row = 1; row <= 5; row++){ index = GetCCDBIndexTAGM(column, row); valueToUse = selectedTAGMOffset->GetBinContent(index); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile << row << " " << column << " " << valueToUse + tagm_tdc_time_offsets[index-1] - meanOffset << endl; } } } outFile.close(); outFile.open(prefix + "tagm_base_time.txt", ios::out); outFile << tagm_t_base_fadc - meanOffset << " " << tagm_t_base_tdc - meanOffset << endl; outFile.close(); } thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGH - SC Target Time"); if (useRF) thisHist = Get2DHistogram("HLDetectorTiming", "TRACKING", "TAGH - RFBunch Time"); if(thisHist != NULL){ outFile.open(prefix + "tagh_tdc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file outFile.open(prefix + "tagh_adc_timing_offsets.txt", ios::out | ios::trunc); outFile.close(); // clear file int nBinsX = thisHist->GetNbinsX(); int nBinsY = thisHist->GetNbinsY(); TH1D * selectedTAGHOffset = new TH1D("selectedTAGHOffset", "Selected TAGH Offset; ID; Offset [ns]", nBinsX, 0.5, nBinsX + 0.5); TH1I * TAGHOffsetDistribution = new TH1I("TAGHOffsetDistribution", "TAGH Offset; TAGH Offset [ns]; Entries", 500, -250, 250); for (int i = 1 ; i <= nBinsX; i++){ TH1D *projY = thisHist->ProjectionY("temp", i, i); // Scan over the histogram //chose the correct number of bins based on the histogram float nsPerBin = (projY->GetBinCenter(projY->GetNbinsX()) - projY->GetBinCenter(1)) / projY->GetNbinsX(); float timeWindow = 2; //ns (Full Width) int binWindow = int(timeWindow / nsPerBin); double maxEntries = 0; double maxMean = 0; for (int j = 1 ; j <= projY->GetNbinsX();j++){ int minBin = j; int maxBin = (j + binWindow) <= projY->GetNbinsX() ? (j + binWindow) : projY->GetNbinsX(); double sum = 0; double nEntries = 0; for (int bin = minBin; bin <= maxBin; bin++){ sum += projY->GetBinContent(bin) * projY->GetBinCenter(bin); nEntries += projY->GetBinContent(bin); if (bin == maxBin){ if (nEntries > maxEntries){ maxMean = sum / nEntries; maxEntries = nEntries; } } } } if(useRF) { int beamBucket = int((maxMean / RF_Period) + 0.5); // +0.5 to handle rounding correctly selectedTAGHOffset->SetBinContent(i, beamBucket); TAGHOffsetDistribution->Fill(beamBucket); } else{ selectedTAGHOffset->SetBinContent(i, maxMean); } /* outFile.open("tagh_tdc_timing_offsets.txt", ios::out | ios::app); outFile << i << " " << maxMean + tagh_tdc_time_offsets[i] << endl; outFile.close(); outFile.open("tagh_adc_timing_offsets.txt", ios::out | ios::app); outFile << i << " " << maxMean + tagh_fadc_time_offsets[i] << endl; outFile.close(); */ } // Fit 1D histogram. If value is far from the fit use the fitted value // Two behaviors above and below microscope // This isn't working well, so removing... /* TFitResultPtr fr1 = selectedTAGHOffset->Fit("pol2", "SQ", "", 0.5, 131.5); TFitResultPtr fr2 = selectedTAGHOffset->Fit("pol2", "SQ", "", 182.5, 274.5); for (int i = 1 ; i <= nBinsX; i++){ double fitResult = 0.0; if (i < 150){ double x0 = fr1->Parameter(0); double x1 = fr1->Parameter(1); double x2 = fr1->Parameter(2); fitResult = x0 + i*x1 + i*i*x2; } else{ double x0 = fr2->Parameter(0); double x1 = fr2->Parameter(1); double x2 = fr2->Parameter(2); fitResult = x0 + i*x1 + i*i*x2; } double outlierCut = 7; double valueToUse = selectedTAGHOffset->GetBinContent(i); if (fabs(selectedTAGHOffset->GetBinContent(i) - fitResult) > outlierCut && valueToUse != 0.0){ valueToUse = fitResult; } selectedTAGHOffset->SetBinContent(i, valueToUse); if(valueToUse != 0) TAGHOffsetDistribution->Fill(valueToUse); } */ double meanOffset = TAGHOffsetDistribution->GetMean(); if (useRF) meanOffset *= RF_Period; for (int i = 1 ; i <= nBinsX; i++){ valueToUse = selectedTAGHOffset->GetBinContent(i); if (useRF) valueToUse *= RF_Period; if (valueToUse == 0) valueToUse = meanOffset; outFile.open(prefix + "tagh_tdc_timing_offsets.txt", ios::out | ios::app); outFile << i << " " << valueToUse + tagh_tdc_time_offsets[i-1] - meanOffset << endl; outFile.close(); outFile.open(prefix + "tagh_adc_timing_offsets.txt", ios::out | ios::app); outFile << i << " " << valueToUse + tagh_fadc_time_offsets[i-1] - meanOffset << endl; outFile.close(); } outFile.open(prefix + "tagh_base_time.txt", ios::out); outFile << tagh_t_base_fadc - meanOffset << " " << tagh_t_base_tdc - meanOffset << endl; outFile.close(); } // We can use the RF time to calibrate the SC time (Experimental for now) double meanSCOffset = 0.0; // In case we change the time of the SC, we need this in this scope if(useRF){ TH1F * selectedSCSectorOffset = new TH1F("selectedSCSectorOffset", "Selected TDC-RF offset;Sector; Time", 30, 0.5, 30.5); TH1F * selectedSCSectorOffsetDistribution = new TH1F("selectedSCSectorOffsetDistribution", "Selected TDC-RF offset;Time;Entries", 100, -3.0, 3.0); TF1* f = new TF1("f","pol0(0)+gaus(1)", -3.0, 3.0); for (int sector = 1; sector <= 30; sector++){ TH1I *scRFHist = Get1DHistogram("HLDetectorTiming", "SC_Target_RF_Compare", Form("Sector %.2i", sector)); if (scRFHist == NULL) continue; //Do the fit TFitResultPtr fr = scRFHist->Fit("pol0", "SQ", "", -2, 2); double p0 = fr->Parameter(0); f->FixParameter(0,p0); f->SetParLimits(2, -2, 2); f->SetParLimits(3, 0, 2); f->SetParameter(1, 10); f->SetParameter(2, scRFHist->GetBinCenter(scRFHist->GetMaximumBin())); f->SetParameter(3, 0); fr = scRFHist->Fit(f, "SQ", "", -2, 2); double SCOffset = fr->Parameter(2); selectedSCSectorOffset->SetBinContent(sector, SCOffset); selectedSCSectorOffsetDistribution->Fill(SCOffset); } // Now write out the offsets meanSCOffset = selectedSCSectorOffsetDistribution->GetMean(); outFile.open(prefix + "sc_tdc_timing_offsets.txt"); for (int sector = 1; sector <= 30; sector++){ outFile << sc_tdc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset << endl; } outFile.close(); outFile.open(prefix + "sc_adc_timing_offsets.txt"); for (int sector = 1; sector <= 30; sector++){ outFile << sc_fadc_time_offsets[sector-1] + selectedSCSectorOffset->GetBinContent(sector) - meanSCOffset << endl; } outFile.close(); outFile.open(prefix + "sc_base_time.txt"); outFile << sc_t_base_fadc - meanSCOffset << " " << sc_t_base_tdc - meanSCOffset << endl; outFile.close(); } TH1I *this1DHist = Get1DHistogram("HLDetectorTiming", "TRACKING", "TOF - SC Target Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 1.5, maximum + 1.5); float mean = fr->Parameter(1); outFile.open(prefix + "tof_base_time.txt"); outFile << tof_t_base_fadc - mean - meanSCOffset<< " " << tof_t_base_tdc - mean - meanSCOffset<< endl; outFile.close(); } this1DHist = Get1DHistogram("HLDetectorTiming", "TRACKING", "BCAL - SC Target Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 5, maximum + 5); float mean = fr->Parameter(1); outFile.open(prefix + "bcal_base_time.txt"); outFile << bcal_t_base_fadc - mean - meanSCOffset << " " << bcal_t_base_tdc - mean - meanSCOffset << endl; // TDC info not used outFile.close(); } this1DHist = Get1DHistogram("HLDetectorTiming", "TRACKING", "FCAL - SC Target Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 5, maximum + 5); float mean = fr->Parameter(1); outFile.open(prefix + "fcal_base_time.txt"); outFile << fcal_t_base - mean - meanSCOffset<< endl; outFile.close(); } this1DHist = Get1DHistogram("HLDetectorTiming", "TRACKING", "Earliest CDC Time Minus Matched SC Time"); if(this1DHist != NULL){ //Gaussian Double_t maximum = this1DHist->GetBinCenter(this1DHist->GetMaximumBin()); TFitResultPtr fr = this1DHist->Fit("gaus", "S", "", maximum - 15, maximum + 10); float mean = fr->Parameter(1); outFile.open(prefix + "cdc_base_time.txt"); outFile << cdc_t_base - mean - meanSCOffset << endl; outFile.close(); } thisFile->Write(); return; }