示例#1
0
文件: Main.cpp 项目: labmec/neopz
void RefinElemComp(TPZCompMesh  *cMesh, int indexEl)
{
    
    TPZVec<int64_t > subindex;
    int64_t nel = cMesh->ElementVec().NElements();
    for(int64_t el=0; el < nel; el++){
        TPZCompEl * compEl = cMesh->ElementVec()[el];
        if(!compEl) continue;
        int64_t ind = compEl->Index();
        if(ind==indexEl){
            compEl->Divide(indexEl, subindex, 1);
        }
    }
}
示例#2
0
int TPZAdaptMesh::HasTrueError(int clindex, REAL &minerror, TPZVec<REAL> &ervec){
    
    TPZGeoCloneMesh *gmesh = dynamic_cast<TPZGeoCloneMesh *> (fCloneMeshes [clindex]->Reference());
    int nref = gmesh->NReference();
    int i;
    for (i=0;i<nref;i++){
        TPZGeoEl *gel = gmesh->ReferenceElement(i);
        TPZCompEl *cel = gel->Reference();
        if (!cel) continue;
        int celindex = cel->Index();
        if (ervec[celindex] >= minerror) return 1;
    }
    return 0;
}
示例#3
0
文件: Main.cpp 项目: labmec/neopz
void RefinUniformElemComp(TPZCompMesh  *cMesh, int ndiv)
{
    
    TPZVec<int64_t > subindex;
    for (int64_t iref = 0; iref < ndiv; iref++) {
        TPZAdmChunkVector<TPZCompEl *> elvec = cMesh->ElementVec();
        int64_t nel = elvec.NElements();
        for(int64_t el=0; el < nel; el++){
            TPZCompEl * compEl = elvec[el];
            if(!compEl) continue;
            int64_t ind = compEl->Index();
            compEl->Divide(ind, subindex, 0);
        }
    }
}
示例#4
0
void TPZMGAnalysis::MeshError(TPZCompMesh *fine, TPZCompMesh *coarse, TPZVec<REAL> &ervec,
							  void (*f)(TPZVec<REAL> &loc, TPZVec<REAL> &val, TPZFMatrix<REAL> &deriv),TPZVec<REAL> &truervec){
	coarse->Reference()->ResetReference();
	coarse->LoadReferences();
	int dim = fine->MaterialVec().begin()->second->Dimension();
	ervec.Resize(coarse->NElements());
	if(f) {
		truervec.Resize(coarse->NElements());
		truervec.Fill(0.,0);
	}
	ervec.Fill(0.,0);
	TPZCompEl *cel;
	TPZAdmChunkVector<TPZCompEl *> &elementvec = fine->ElementVec();
	int numel = elementvec.NElements();
	int el;
	for(el=0; el<numel; el++) {
		cel = elementvec[el];
		if (!cel) continue;
		TPZInterpolatedElement *cint = dynamic_cast<TPZInterpolatedElement *> (cel);
		if(!cint) continue;
		int ncon = cint->NConnects();
		TPZGeoElSide gelside(cint->Reference(),ncon-1);
		if(gelside.Dimension() != dim) continue;
		TPZGeoElSide gellarge(gelside);
		while(!gellarge.Reference().Exists() && gellarge.Father2().Exists()) gellarge = gellarge.Father2();
		if(!gellarge.Reference().Exists()) {
			cout << "TPZMGAnalsysis::BuildTransferMatrix element " << el << " found no corresponding element\n";
			continue;
		}
		TPZCompElSide cellargeside = gellarge.Reference();
		TPZCompEl *cellarge = cellargeside.Element();
		TPZInterpolatedElement *cintlarge = (TPZInterpolatedElement *) cellarge;
		TPZTransform transform(gelside.Dimension(),gellarge.Dimension());
		gelside.SideTransform3(gellarge,transform);
		int index = cellarge->Index();
		REAL truerror = 0.;
		ervec[index] += ElementError(cint,cintlarge,transform,f,truerror);
		if(f) truervec[index]  += truerror;
	}
}
示例#5
0
//void DivideRecursive(TPZCompEl *locel,int index,TPZVec<int> indexsubs,int hn);
void TPZAnalysisError::HPAdapt(REAL CurrentEtaAdmissible, std::ostream &out) {
	
	arq << "CurrentEtaAdmissible "  << CurrentEtaAdmissible << endl;
	
	TPZAdmChunkVector<TPZCompEl *>&listel = Mesh()->ElementVec();
    bool store_error = false;
	EvaluateError(CurrentEtaAdmissible,store_error, out);
	TPZVec<TPZCompElSide> SingLocal(fSingular);
	fSingular.Resize(0);
	
	int64_t nel = fElIndexes.NElements();
	for(int64_t ielloc=0;ielloc<nel;ielloc++) {
		int64_t iel = fElIndexes[ielloc];
		// if the element has already been treated (e.g. singularity) skip the process
		if(iel == -1) continue;
		TPZInterpolatedElement *elem = (TPZInterpolatedElement *) listel[iel];
		if(!elem || elem->Material()->Id() < 0) {
			PZError << "TPZAnalysisError::HPAdapt boundary element with error?\n";
			PZError.flush();
			continue;
		}
		REAL csi = fElErrors[ielloc] / fAdmissibleError;
		// Verificar se o element atual e um elemento singular
		int64_t ising, nsing = SingLocal.NElements();
		for(ising=0; ising<nsing; ising++) {
			if(elem == SingLocal[ising].Element()) {
				ZoomInSingularity(csi,SingLocal[ising]);
				break;
			}
		}
		// Go to the end of the loop if the element was handled by the singularity
		if(ising < nsing) continue;
		//calculo da ordem pn do elemento atual
		int nsides = elem->Reference()->NSides();
		REAL pFo = double(elem->EffectiveSideOrder(nsides-1));//quadrilatero
		
		// Newton's Method -> compute pNew    
		REAL pFn = pFo, res = 10.0, phi, del, dph, tol = 0.001;
		int64_t MaxIter = 100; int64_t iter=0;
		while (iter < MaxIter && res > tol) {
			phi = pFo+log(csi)-pFo*log(pFn/pFo);
			dph = pFn/(pFo+pFn);
			del = dph*(phi-pFn);
			if (del+pFn <= 0.0) // caiu fora do intervalo!
				del = 0.5 - pFn;
			res = fabs(del);
			pFn = del+pFn;
			iter++;
		} // end of Newton's Method
		
		if (iter == MaxIter)
			PZError << "\n - Newton's Method Failed at Element = " << elem->Reference()->Id() << endl;
		if(pFn < 1.) pFn = 1.;
		REAL factor = pow(csi,-1.0/pFn)*(pow(pFn/pFo,pFo/pFn));
		
		if(factor <= 0.75) 
			factor = 0.5;   // refine h
		else factor = 1.0; // don't refine h
		
		// Newton's Method -> compute once again pNew    
		pFn = pFo; iter = 0; res = 10.0;
		while (iter < MaxIter && res > tol) {
			phi = -pFn*log(factor)-log(csi)+pFo*log(pFn/pFo);
			dph = pFn/(pFo-pFn*log(factor));
			del = -dph*phi;
			if (del+pFn <= 0.0) // caiu fora do intervalo!
				del = 0.5 - pFn;
			res = fabs(del);
			pFn = del+pFn;
			iter++;
		} // end of Newton's Method
		
		if (iter == MaxIter)
			PZError << "\n - Newton's Method Failed at Element = " << elem->Reference()->Id() << endl;
		if(pFn < 1.) pFn = 1.;
		int pNew = 0;//(int) floor(pFn + 0.5);  // get the integer
		while(REAL(pNew) < (pFn+0.5)) pNew++;
		TPZVec<REAL> x(3),cs(2,0.);
		elem->Reference()->X(cs,x);
		
		elem->PRefine(pNew);
		TPZCompEl *locel = elem;
		//Divide elements
		if(factor == 0.5 ) {
			TPZVec<int64_t> indexsubs;
			int64_t index = locel->Index();
			elem->Divide(index,indexsubs,1);
		} 
	}
}