int NumSequenceMatches(const TransformationParameter transform_param, const Datum& datum, Phase phase) { // Get crop sequence with Caffe seed 1701. DataTransformer<Dtype> transformer(transform_param, phase); const int crop_size = transform_param.crop_size(); Caffe::set_random_seed(seed_); transformer.InitRand(); Blob<Dtype> blob(1, datum.channels(), datum.height(), datum.width()); if (transform_param.crop_size() > 0) { blob.Reshape(1, datum.channels(), crop_size, crop_size); } vector<vector<Dtype> > crop_sequence; for (int iter = 0; iter < this->num_iter_; ++iter) { vector<Dtype> iter_crop_sequence; transformer.Transform(datum, &blob); for (int j = 0; j < blob.count(); ++j) { iter_crop_sequence.push_back(blob.cpu_data()[j]); } crop_sequence.push_back(iter_crop_sequence); } // Check if the sequence differs from the previous int num_sequence_matches = 0; for (int iter = 0; iter < this->num_iter_; ++iter) { vector<Dtype> iter_crop_sequence = crop_sequence[iter]; transformer.Transform(datum, &blob); for (int j = 0; j < blob.count(); ++j) { num_sequence_matches += (crop_sequence[iter][j] == blob.cpu_data()[j]); } } return num_sequence_matches; }
DataTransformer<Dtype>::DataTransformer(const TransformationParameter& param, Phase phase) : param_(param), phase_(phase) { // check if we want to use mean_file if (param_.has_mean_file()) { CHECK_EQ(param_.mean_value_size(), 0) << "Cannot specify mean_file and mean_value at the same time"; const string& mean_file = param.mean_file(); if (Caffe::root_solver()) { LOG(INFO) << "Loading mean file from: " << mean_file; } if ( mean_file.substr(mean_file.length()-3,3) == string("jpg") || mean_file.substr(mean_file.length()-3,3) == string("bmp") ) { cv::Mat mean_img; if ( param.mean_color() ) { mean_img = cv::imread(mean_file.c_str(), CV_LOAD_IMAGE_COLOR); data_mean_.Reshape(1, mean_img.channels(), mean_img.rows, mean_img.cols); int mean_data_index = 0; for ( int k = 0; k < 3; ++k ) for ( int r = 0; r < mean_img.rows; ++r ) for ( int c = 0; c < mean_img.cols; ++c ) data_mean_.mutable_cpu_data()[mean_data_index++] = mean_img.at<cv::Vec3b>(r,c)[k]; } else { mean_img = cv::imread(mean_file.c_str(), CV_LOAD_IMAGE_GRAYSCALE); data_mean_.Reshape(1, mean_img.channels(), mean_img.rows, mean_img.cols); int mean_data_index = 0; for ( int r = 0; r < mean_img.rows; ++r ) for ( int c = 0; c < mean_img.cols; ++c ) data_mean_.mutable_cpu_data()[mean_data_index++] = mean_img.at<unsigned char>(r,c); } } else { BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); data_mean_.FromProto(blob_proto); } } offset_w_ = 0; offset_h_ = 0; apply_mirror_ = false; // check if we want to use mean_value if (param_.mean_value_size() > 0) { CHECK(param_.has_mean_file() == false) << "Cannot specify mean_file and mean_value at the same time"; for (int c = 0; c < param_.mean_value_size(); ++c) { mean_values_.push_back(param_.mean_value(c)); } } }
DataTransformer<Dtype>::DataTransformer(const TransformationParameter& param, Phase phase) : param_(param), phase_(phase) { // check if we want to use mean_file if (param_.has_mean_file()) { CHECK_EQ(param_.mean_value_size(), 0) << "Cannot specify mean_file and mean_value at the same time"; const string& mean_file = param.mean_file(); LOG(INFO) << "Loading mean file from: " << mean_file; BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); data_mean_.FromProto(blob_proto); } // check if we want to use mean_value if (param_.mean_value_size() > 0) { CHECK(param_.has_mean_file() == false) << "Cannot specify mean_file and mean_value at the same time"; for (int c = 0; c < param_.mean_value_size(); ++c) { mean_values_.push_back(param_.mean_value(c)); } } }
CaffeFeatExtractor<Dtype>::CaffeFeatExtractor(string _caffemodel_file, string _prototxt_file, int _resizeWidth, int _resizeHeight, string _blob_names, string _compute_mode, int _device_id, bool _timing) { // Setup the GPU or the CPU mode for Caffe if (strcmp(_compute_mode.c_str(), "GPU") == 0 || strcmp(_compute_mode.c_str(), "gpu") == 0) { std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): using GPU" << std::endl; gpu_mode = true; device_id = _device_id; Caffe::CheckDevice(device_id); std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): using device_id = " << device_id << std::endl; Caffe::set_mode(Caffe::GPU); Caffe::SetDevice(device_id); // Optional: to check that the GPU is working properly... Caffe::DeviceQuery(); } else { std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): using CPU" << std::endl; gpu_mode = false; device_id = -1; Caffe::set_mode(Caffe::CPU); } // Assign specified .caffemodel and .prototxt files caffemodel_file = _caffemodel_file; prototxt_file = _prototxt_file; // Network creation using the specified .prototxt feature_extraction_net = boost::make_shared<Net<Dtype> > (prototxt_file, caffe::TEST); // Network initialization using the specified .caffemodel feature_extraction_net->CopyTrainedLayersFrom(caffemodel_file); // Mean image initialization mean_width = 0; mean_height = 0; mean_channels = 0; caffe::shared_ptr<MemoryDataLayer<Dtype> > memory_data_layer = boost::dynamic_pointer_cast<caffe::MemoryDataLayer<Dtype> >(feature_extraction_net->layers()[0]); TransformationParameter tp = memory_data_layer->layer_param().transform_param(); if (tp.has_mean_file()) { const string& mean_file = tp.mean_file(); std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): loading mean file from " << mean_file << std::endl; BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); Blob<Dtype> data_mean; data_mean.FromProto(blob_proto); mean_channels = data_mean.channels(); mean_width = data_mean.width(); mean_height = data_mean.height(); } else if (tp.mean_value_size()>0) { const int b = tp.mean_value(0); const int g = tp.mean_value(1); const int r = tp.mean_value(2); mean_channels = tp.mean_value_size(); mean_width = _resizeWidth; mean_height = _resizeHeight; std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): B " << b << " G " << g << " R " << r << std::endl; std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): resizing anysotropically to " << " W: " << mean_width << " H: " << mean_height << std::endl; } else { std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): Error: neither mean file nor mean value in prototxt!" << std::endl; } // Check that requested blobs exist boost::split(blob_names, _blob_names, boost::is_any_of(",")); for (size_t i = 0; i < blob_names.size(); i++) { if (!feature_extraction_net->has_blob(blob_names[i])) { std::cout << "CaffeFeatExtractor::CaffeFeatExtractor(): unknown feature blob name " << blob_names[i] << " in the network " << prototxt_file << std::endl; } } // Initialize timing flag timing = _timing; }