void TransientMultiApp::incrementTStep() { if (!_sub_cycling) { for (unsigned int i = 0; i < _my_num_apps; i++) { Transient * ex = _transient_executioners[i]; ex->incrementStepOrReject(); } } }
void TransientMultiApp::advanceStep() { if (!_auto_advance) { for(unsigned int i=0; i<_my_num_apps; i++) { /*FEProblem * problem =*/ appProblem(_first_local_app + i); Transient * ex = _transient_executioners[i]; ex->endStep(); ex->incrementStepOrReject(); } } }
void TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance) { if (_sub_cycling && !auto_advance) mooseError("TransientMultiApp with sub_cycling=true is not compatible with auto_advance=false"); if (_catch_up && !auto_advance) mooseError("TransientMultiApp with catch_up=true is not compatible with auto_advance=false"); if (!_has_an_app) return; _auto_advance = auto_advance; Moose::out << "Solving MultiApp " << _name << std::endl; // "target_time" must always be in global time target_time += _app.getGlobalTimeOffset(); MPI_Comm swapped = Moose::swapLibMeshComm(_my_comm); int rank; int ierr; ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr); for (unsigned int i=0; i<_my_num_apps; i++) { FEProblem * problem = appProblem(_first_local_app + i); OutputWarehouse & output_warehouse = _apps[i]->getOutputWarehouse(); Transient * ex = _transient_executioners[i]; // The App might have a different local time from the rest of the problem Real app_time_offset = _apps[i]->getGlobalTimeOffset(); if ((ex->getTime() + app_time_offset) + 2e-14 >= target_time) // Maybe this MultiApp was already solved continue; if (_sub_cycling) { Real time_old = ex->getTime() + app_time_offset; if (_interpolate_transfers) { AuxiliarySystem & aux_system = problem->getAuxiliarySystem(); System & libmesh_aux_system = aux_system.system(); NumericVector<Number> & solution = *libmesh_aux_system.solution; NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old"); solution.close(); // Save off the current auxiliary solution transfer_old = solution; transfer_old.close(); // Snag all of the local dof indices for all of these variables AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars); ConstElemRange & elem_range = *problem->mesh().getActiveLocalElementRange(); Threads::parallel_reduce(elem_range, aldit); _transferred_dofs = aldit._all_dof_indices; } if (_output_sub_cycles) output_warehouse.allowOutput(true); else output_warehouse.allowOutput(false); ex->setTargetTime(target_time-app_time_offset); // unsigned int failures = 0; bool at_steady = false; // Now do all of the solves we need while(true) { if (_first != true) ex->incrementStepOrReject(); _first = false; if (!(!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time)) break; ex->computeDT(); if (_interpolate_transfers) { // See what time this executioner is going to go to. Real future_time = ex->getTime() + app_time_offset + ex->getDT(); // How far along we are towards the target time: Real step_percent = (future_time - time_old) / (target_time - time_old); Real one_minus_step_percent = 1.0 - step_percent; // Do the interpolation for each variable that was transferred to FEProblem * problem = appProblem(_first_local_app + i); AuxiliarySystem & aux_system = problem->getAuxiliarySystem(); System & libmesh_aux_system = aux_system.system(); NumericVector<Number> & solution = *libmesh_aux_system.solution; NumericVector<Number> & transfer = libmesh_aux_system.get_vector("transfer"); NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old"); solution.close(); // Just to be sure transfer.close(); transfer_old.close(); std::set<dof_id_type>::iterator it = _transferred_dofs.begin(); std::set<dof_id_type>::iterator end = _transferred_dofs.end(); for(; it != end; ++it) { dof_id_type dof = *it; solution.set(dof, (transfer_old(dof) * one_minus_step_percent) + (transfer(dof) * step_percent)); // solution.set(dof, transfer_old(dof)); // solution.set(dof, transfer(dof)); // solution.set(dof, 1); } solution.close(); } ex->takeStep(); bool converged = ex->lastSolveConverged(); if (!converged) { mooseWarning("While sub_cycling "<<_name<<_first_local_app+i<<" failed to converge!"<<std::endl); _failures++; if (_failures > _max_failures) mooseError("While sub_cycling "<<_name<<_first_local_app+i<<" REALLY failed!"<<std::endl); } Real solution_change_norm = ex->getSolutionChangeNorm(); if (_detect_steady_state) Moose::out << "Solution change norm: " << solution_change_norm << std::endl; if (converged && _detect_steady_state && solution_change_norm < _steady_state_tol) { Moose::out << "Detected Steady State! Fast-forwarding to " << target_time << std::endl; at_steady = true; // Indicate that the next output call (occurs in ex->endStep()) should output, regarless of intervals etc... output_warehouse.forceOutput(); // Clean up the end ex->endStep(target_time-app_time_offset); } else ex->endStep(); } // If we were looking for a steady state, but didn't reach one, we still need to output one more time if (!at_steady) { output_warehouse.forceOutput(); output_warehouse.outputStep(); } } else if (_tolerate_failure) { ex->takeStep(dt); output_warehouse.forceOutput(); ex->endStep(target_time-app_time_offset); } else { Moose::out << "Solving Normal Step!" << std::endl; if (auto_advance) if (_first != true) ex->incrementStepOrReject(); if (auto_advance) output_warehouse.allowOutput(true); ex->takeStep(dt); if (auto_advance) { ex->endStep(); if (!ex->lastSolveConverged()) { mooseWarning(_name << _first_local_app+i << " failed to converge!" << std::endl); if (_catch_up) { Moose::out << "Starting Catch Up!" << std::endl; bool caught_up = false; unsigned int catch_up_step = 0; Real catch_up_dt = dt/2; while(!caught_up && catch_up_step < _max_catch_up_steps) { Moose::err << "Solving " << _name << "catch up step " << catch_up_step << std::endl; ex->incrementStepOrReject(); ex->computeDT(); ex->takeStep(catch_up_dt); // Cut the timestep in half to try two half-step solves if (ex->lastSolveConverged()) { if (ex->getTime() + app_time_offset + ex->timestepTol()*std::abs(ex->getTime()) >= target_time) { output_warehouse.forceOutput(); output_warehouse.outputStep(); caught_up = true; } } else catch_up_dt /= 2.0; ex->endStep(); catch_up_step++; } if (!caught_up) mooseError(_name << " Failed to catch up!\n"); output_warehouse.allowOutput(true); } } } } } _first = false; // Swap back Moose::swapLibMeshComm(swapped); _transferred_vars.clear(); Moose::out << "Finished Solving MultiApp " << _name << std::endl; }
bool TransientMultiApp::solveStep(Real dt, Real target_time, bool auto_advance) { if (!_has_an_app) return true; _auto_advance = auto_advance; _console << "Solving MultiApp " << name() << std::endl; // "target_time" must always be in global time target_time += _app.getGlobalTimeOffset(); Moose::ScopedCommSwapper swapper(_my_comm); bool return_value = true; // Make sure we swap back the communicator regardless of how this routine is exited try { int rank; int ierr; ierr = MPI_Comm_rank(_orig_comm, &rank); mooseCheckMPIErr(ierr); for (unsigned int i = 0; i < _my_num_apps; i++) { FEProblemBase & problem = appProblemBase(_first_local_app + i); Transient * ex = _transient_executioners[i]; // The App might have a different local time from the rest of the problem Real app_time_offset = _apps[i]->getGlobalTimeOffset(); // Maybe this MultiApp was already solved if ((ex->getTime() + app_time_offset + 2e-14 >= target_time) || (ex->getTime() >= ex->endTime())) continue; if (_sub_cycling) { Real time_old = ex->getTime() + app_time_offset; if (_interpolate_transfers) { AuxiliarySystem & aux_system = problem.getAuxiliarySystem(); System & libmesh_aux_system = aux_system.system(); NumericVector<Number> & solution = *libmesh_aux_system.solution; NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old"); solution.close(); // Save off the current auxiliary solution transfer_old = solution; transfer_old.close(); // Snag all of the local dof indices for all of these variables AllLocalDofIndicesThread aldit(libmesh_aux_system, _transferred_vars); ConstElemRange & elem_range = *problem.mesh().getActiveLocalElementRange(); Threads::parallel_reduce(elem_range, aldit); _transferred_dofs = aldit._all_dof_indices; } // Disable/enable output for sub cycling problem.allowOutput(_output_sub_cycles); // disables all outputs, including console problem.allowOutput<Console>(_print_sub_cycles); // re-enables Console to print, if desired ex->setTargetTime(target_time - app_time_offset); // unsigned int failures = 0; bool at_steady = false; if (_first && !_app.isRecovering()) problem.advanceState(); bool local_first = _first; // Now do all of the solves we need while ((!at_steady && ex->getTime() + app_time_offset + 2e-14 < target_time) || !ex->lastSolveConverged()) { if (local_first != true) ex->incrementStepOrReject(); local_first = false; ex->preStep(); ex->computeDT(); if (_interpolate_transfers) { // See what time this executioner is going to go to. Real future_time = ex->getTime() + app_time_offset + ex->getDT(); // How far along we are towards the target time: Real step_percent = (future_time - time_old) / (target_time - time_old); Real one_minus_step_percent = 1.0 - step_percent; // Do the interpolation for each variable that was transferred to FEProblemBase & problem = appProblemBase(_first_local_app + i); AuxiliarySystem & aux_system = problem.getAuxiliarySystem(); System & libmesh_aux_system = aux_system.system(); NumericVector<Number> & solution = *libmesh_aux_system.solution; NumericVector<Number> & transfer = libmesh_aux_system.get_vector("transfer"); NumericVector<Number> & transfer_old = libmesh_aux_system.get_vector("transfer_old"); solution.close(); // Just to be sure transfer.close(); transfer_old.close(); for (const auto & dof : _transferred_dofs) { solution.set(dof, (transfer_old(dof) * one_minus_step_percent) + (transfer(dof) * step_percent)); // solution.set(dof, transfer_old(dof)); // solution.set(dof, transfer(dof)); // solution.set(dof, 1); } solution.close(); } ex->takeStep(); bool converged = ex->lastSolveConverged(); if (!converged) { mooseWarning( "While sub_cycling ", name(), _first_local_app + i, " failed to converge!\n"); _failures++; if (_failures > _max_failures) { std::stringstream oss; oss << "While sub_cycling " << name() << _first_local_app << i << " REALLY failed!"; throw MultiAppSolveFailure(oss.str()); } } Real solution_change_norm = ex->getSolutionChangeNorm(); if (_detect_steady_state) _console << "Solution change norm: " << solution_change_norm << std::endl; if (converged && _detect_steady_state && solution_change_norm < _steady_state_tol) { _console << "Detected Steady State! Fast-forwarding to " << target_time << std::endl; at_steady = true; // Indicate that the next output call (occurs in ex->endStep()) should output, // regardless of intervals etc... problem.forceOutput(); // Clean up the end ex->endStep(target_time - app_time_offset); ex->postStep(); } else { ex->endStep(); ex->postStep(); } } // If we were looking for a steady state, but didn't reach one, we still need to output one // more time, regardless of interval if (!at_steady) problem.outputStep(EXEC_FORCED); } // sub_cycling else if (_tolerate_failure) { ex->takeStep(dt); ex->endStep(target_time - app_time_offset); ex->postStep(); } else { _console << "Solving Normal Step!" << std::endl; if (_first && !_app.isRecovering()) problem.advanceState(); if (auto_advance) problem.allowOutput(true); ex->takeStep(dt); if (auto_advance) { ex->endStep(); ex->postStep(); if (!ex->lastSolveConverged()) { mooseWarning(name(), _first_local_app + i, " failed to converge!\n"); if (_catch_up) { _console << "Starting Catch Up!" << std::endl; bool caught_up = false; unsigned int catch_up_step = 0; Real catch_up_dt = dt / 2; while (!caught_up && catch_up_step < _max_catch_up_steps) { _console << "Solving " << name() << " catch up step " << catch_up_step << std::endl; ex->incrementStepOrReject(); ex->computeDT(); ex->takeStep(catch_up_dt); // Cut the timestep in half to try two half-step solves ex->endStep(); if (ex->lastSolveConverged()) { if (ex->getTime() + app_time_offset + (ex->timestepTol() * std::abs(ex->getTime())) >= target_time) { problem.outputStep(EXEC_FORCED); caught_up = true; } } else catch_up_dt /= 2.0; ex->postStep(); catch_up_step++; } if (!caught_up) throw MultiAppSolveFailure(name() + " Failed to catch up!\n"); } } } else { if (!ex->lastSolveConverged()) { // Even if we don't allow auto_advance - we can still catch up to the current time if // possible if (_catch_up) { _console << "Starting Catch Up!" << std::endl; bool caught_up = false; unsigned int catch_up_step = 0; Real catch_up_dt = dt / 2; // Note: this loop will _break_ if target_time is satisfied while (catch_up_step < _max_catch_up_steps) { _console << "Solving " << name() << " catch up step " << catch_up_step << std::endl; ex->incrementStepOrReject(); ex->computeDT(); ex->takeStep(catch_up_dt); // Cut the timestep in half to try two half-step solves // This is required because we can't call endStep() yet // (which normally increments time) Real current_time = ex->getTime() + ex->getDT(); if (ex->lastSolveConverged()) { if (current_time + app_time_offset + (ex->timestepTol() * std::abs(current_time)) >= target_time) { caught_up = true; break; // break here so that we don't run endStep() or postStep() since this // MultiApp should NOT be auto_advanced } } else catch_up_dt /= 2.0; ex->endStep(); ex->postStep(); catch_up_step++; } if (!caught_up) throw MultiAppSolveFailure(name() + " Failed to catch up!\n"); } else throw MultiAppSolveFailure(name() + " failed to converge"); } } } // Re-enable all output (it may of been disabled by sub-cycling) problem.allowOutput(true); } _first = false; _console << "Successfully Solved MultiApp " << name() << "." << std::endl; } catch (MultiAppSolveFailure & e) { mooseWarning(e.what()); _console << "Failed to Solve MultiApp " << name() << ", attempting to recover." << std::endl; return_value = false; } _transferred_vars.clear(); return return_value; }