示例#1
0
void
Fetch::initialize (std::vector<Select*>& select, Treelog& msg)
{ 
  Treelog::Open nest (msg, this->tag);
  bool found = false;
  
  for (size_t j = 0; j != select.size (); j++)
    {
      Treelog::Open nest (msg, select[j]->tag ());

      if (this->tag == select[j]->tag ())
        {
          if (found)
            msg.warning ("Duplicate tag ignored");
          else
            {	
              select[j]->add_dest (this);
              this->select_dimension = select[j]->dimension ();
              this->type = ((select[j]->handle != Select::Handle::current)
                            && !select[j]->accumulate)
                ? Fetch::Flux 
                : Fetch::NewContent;
              found = true;
            }
        }
    }
  if (!found)
    msg.warning ("No tag found");
}
示例#2
0
void 
MovementSolute::element (const Soil& soil, const SoilWater& soil_water,
                         DOE& element, 
                         const double diffusion_coefficient, double dt, 
                         Treelog& msg)
{
  for (size_t i = 0; i < matrix_solute.size (); i++)
    {
      Treelog::Open nest (msg, "element", i, matrix_solute[i]->library_id ());
      try
        {
          matrix_solute[i]->element (geometry (), soil, soil_water, element, 
                                     diffusion_coefficient, dt, 
                                     msg);
          if (i > 0)
            msg.message ("Succeeded");
          return;
        }
      catch (const char* error)
        {
          msg.warning (std::string ("DOM problem: ") + error);
        }
      catch (const std::string& error)
        {
          msg.warning (std::string ("DOM trouble: ") + error);
        }
    }
  throw "Matrix element transport failed";
}
示例#3
0
 static void propagate (Treelog& msg, int nest, const std::string& text)
 {
   switch (nest)
     {
     case is_unknown:
       msg.entry (text);
       break;
     case is_debug:
       msg.debug (text);
       break;
     case is_plain:
       msg.message (text);
       break;
     case is_warning:
       msg.warning (text);
       break;
     case is_error:
       msg.error (text);
       break;
     case is_bug:
       msg.bug (text);
       break;
     case is_close:
       msg.close ();
       break;
     case is_touch:
       msg.touch ();
       break;
     case is_flush:
       msg.flush ();
       break;
     default:
       msg.open (text);
     }
 }
bool
GnuplotProfile::plot (std::ostream& out, Treelog& msg)
{ 
  if (xplus.size () < 1 || zplus.size () < 1)
    {
      msg.warning ("Nothing to plot");
      return false;
    }

  // Header.
  plot_header (out);
  out << "\
set pm3d map\n\
set pm3d corners2color c4\n\
unset colorbox\n";
  // Same size axes.
  out << "\
set size ratio -1\n";

  // Legend.
  if (legend != "auto")
    out << "set key " << legend_table[legend] << "\n";

  // Extra.
  for (size_t i = 0; i < extra.size (); i++)
    out << extra[i].name () << "\n";

  // Plot.
  out << "splot '-' using 2:1:3 title \"\"\n";

  // Data.
  daisy_assert (value.size () == xplus.size () * zplus.size ());

  // Cell corners only.
  daisy_assert (value.size () > 0);
  out << "0 0 " << value[0] << "\n";
  daisy_assert (value.size () >= zplus.size ());
  for (size_t iz = 0; iz < zplus.size (); iz++)
    out << zplus[iz] << " 0 " << value[iz * xplus.size ()] << "\n";
  for (size_t ix = 0; ix < xplus.size (); ix++)
    {
      out << "\n0 " << xplus[ix] << " " << value[ix] << "\n";
      for (size_t iz = 0; iz < zplus.size (); iz++)
        {
          const size_t c = ix + iz * xplus.size ();
          daisy_assert (c < value.size ());
          out << zplus[iz] << " " << xplus[ix] << " " << value[c] << "\n";
        }
    }

  out << "e\n";

  // The end.
  if (interactive ())
    out << "pause mouse\n";

  return true;
}
void
ABAProdUptake::production (const Units& units,
                           const Geometry& geo, const SoilWater& soil_water,
                           const std::vector<double>& S /* [cm^3/cm^3/h] */,
                           const std::vector<double>& /* l [cm/cm^3] */,
                           std::vector<double>& ABA    /* [g/cm^3/h] */,
                           Treelog& msg) const
{
  // Check input.
  const size_t cell_size = geo.cell_size ();
  daisy_assert (ABA.size () == cell_size);
  daisy_assert (S.size () == cell_size);
  
  // For all cells.
  for (size_t c = 0; c < cell_size; c++)
    {
      const double h = soil_water.h (c);
      // Set up 'h' in scope.
      scope.set (h_name, soil_water.h (c));

      // Find soil value.
      double value = 0.0;
      if (!expr->tick_value (units, value, ABA_unit, scope, msg))
	msg.error ("No ABA production value found");
      if (!std::isfinite (value) || value < 0.0)
        {
          if (h > -14000) // We are not concerned with ABA below wilting point.
            {
              std::ostringstream tmp;
              tmp << "ABA in cell " << c << " with h = " << h
                  << " was " << value << " [" << ABA_unit << "], using 0 instead";
              msg.warning (tmp.str ());
            }
          value = 0.0;
        }
      daisy_assert (std::isfinite (S[c]));

      // Find ABA uptake.
      ABA[c] = value * S[c];
      // [g/cm^3 S/h] = [g/cm^3 W] * [cm^3 W/cm^3 S/h]
      daisy_assert (std::isfinite (ABA[c]));
    }
}
示例#6
0
void
Rootdens_G_P::set_density  (const Geometry& geo,
                            double SoilDepth, double CropDepth,
                            const double /* CropWidth [cm] */,
                            double WRoot, double /* DS */,
                            std::vector<double>& Density, Treelog& msg)
{
    const double Depth = std::min (SoilDepth, CropDepth);
    // Dimensional conversion.
    static const double m_per_cm = 0.01;

    const double MinLengthPrArea = (DensRtTip * 1.2) * CropDepth;
    const double LengthPrArea
        = std::max (m_per_cm * SpRtLength * WRoot, MinLengthPrArea); // [cm/cm^2]

    // We find a * depth first.
    const double ad = density_distribution_parameter (LengthPrArea /
                      (CropDepth * DensRtTip));
    // We find L0 from a d.
    //
    // L0 * exp (-a d) = DensRtTip
    // => L0 = DensRtTip / exp (-a d)
    L0 = DensRtTip * exp (ad);	//  1 / exp (-x) = exp (x)
    a = ad / CropDepth;

    if (Depth < CropDepth)
    {
        double Lz = L0 * exp (-a * Depth);
        a = density_distribution_parameter (LengthPrArea / (Depth * Lz)) / Depth;
    }

    // Check minimum density
    double extra = 0.0;
    if (MinDens > 0.0 && WRoot > 0.0)
    {
        daisy_assert (L0 > 0.0);
        daisy_assert (a > 0.0);
        const double too_low = -log (MinDens / L0) / a; // [cm]

        if (too_low < Depth)
        {
            // We don't have MinDens all the way down.
            const double NewLengthPrArea
                =  LengthPrArea - MinDens * Depth; // [cm/cm^2]
#if 1
            Treelog::Open nest (msg, "RootDens G+P");
            std::ostringstream tmp;
            tmp << "too_low = " << too_low
                << ", NewLengthPrArea = " << NewLengthPrArea
                << "MinLengthPrArea = " << MinLengthPrArea;
            msg.warning (tmp.str ());
#endif
            if (too_low > 0.0 && NewLengthPrArea > too_low * DensRtTip * 1.2)
            {
                // There is enough to have MinDens all the way, spend
                // the rest using the standard model until the point
                // where the standard model would give too little..
                a = density_distribution_parameter (NewLengthPrArea
                                                    / (too_low * DensRtTip));
                L0 = DensRtTip * exp (a);
                a /= too_low;
                extra = MinDens;
            }
            else
            {
                // There is too little, use uniform density all the way.
                L0 = 0.0;
                extra = LengthPrArea / Depth;
            }
        }
    }

    const size_t size = geo.cell_size ();
    daisy_assert (Density.size () == size);
#if 1
    for (size_t i = 0; i < size; i++)
    {
        const double f = geo.fraction_in_z_interval (i, 0.0, -Depth);
        const double d = -geo.cell_z (i);
        if (f > 0.01)
            Density[i] = f * (extra + L0 * exp (- a * d));
        else
            Density[i] = 0.0;
    }
#else // 0
    unsigned int i = 0;
    for (; i == 0 || -geo.zplus (i-1) < Depth; i++)
    {
        daisy_assert (i < geo.size ());
        Density[i] = extra + L0 * exp (a * geo.cell_z (i));
    }

    for (; i < geo.size (); i++)
        Density[i] = 0.0;
#endif // 0
}
void 
UZRectMollerup::tick (const GeometryRect& geo,
		      const std::vector<size_t>& drain_cell,
		      const double drain_water_level,
		      const Soil& soil, 
		      SoilWater& soil_water, const SoilHeat& soil_heat,
		      const Surface& surface, const Groundwater& groundwater,
		      const double dt, Treelog& msg)

{
  daisy_assert (K_average.get ());
  const size_t edge_size = geo.edge_size (); // number of edges 
  const size_t cell_size = geo.cell_size (); // number of cells 

  // Insert magic here.
  
  ublas::vector<double> Theta (cell_size); // water content 
  ublas::vector<double> Theta_previous (cell_size); // at start of small t-step
  ublas::vector<double> h (cell_size); // matrix pressure
  ublas::vector<double> h_previous (cell_size); // at start of small timestep
  ublas::vector<double> h_ice (cell_size); // 
  ublas::vector<double> S (cell_size); // sink term
  ublas::vector<double> S_vol (cell_size); // sink term
#ifdef TEST_OM_DEN_ER_BRUGT
  ublas::vector<double> S_macro (cell_size);  // sink term
  std::vector<double> S_drain (cell_size, 0.0); // matrix-> macro -> drain flow 
  std::vector<double> S_drain_sum (cell_size, 0.0); // For large timestep
  const std::vector<double> S_matrix (cell_size, 0.0);  // matrix -> macro 
  std::vector<double> S_matrix_sum (cell_size, 0.0); // for large timestep
#endif
  ublas::vector<double> T (cell_size); // temperature 
  ublas::vector<double> Kold (edge_size); // old hydraulic conductivity
  ublas::vector<double> Ksum (edge_size); // Hansen hydraulic conductivity
  ublas::vector<double> Kcell (cell_size); // hydraulic conductivity
  ublas::vector<double> Kold_cell (cell_size); // old hydraulic conductivity
  ublas::vector<double> Ksum_cell (cell_size); // Hansen hydraulic conductivity
  ublas::vector<double> h_lysimeter (cell_size);
  std::vector<bool> active_lysimeter (cell_size);
  const std::vector<size_t>& edge_above = geo.cell_edges (Geometry::cell_above);
  const size_t edge_above_size = edge_above.size ();
  ublas::vector<double> remaining_water (edge_above_size);
  std::vector<bool> drain_cell_on (drain_cell.size (),false); 
  

  for (size_t i = 0; i < edge_above_size; i++)
    {
      const size_t edge = edge_above[i];
      remaining_water (i) = surface.h_top (geo, edge);
    }
  ublas::vector<double> q;	// Accumulated flux
  q = ublas::zero_vector<double> (edge_size);
  ublas::vector<double> dq (edge_size); // Flux in small timestep.
  dq = ublas::zero_vector<double> (edge_size);

  //Make Qmat area diagonal matrix 
  //Note: This only needs to be calculated once... 
  ublas::banded_matrix<double> Qmat (cell_size, cell_size, 0, 0);
  for (int c = 0; c < cell_size; c++)
    Qmat (c, c) = geo.cell_volume (c);
 
  // make vectors 
  for (size_t cell = 0; cell != cell_size ; ++cell) 
    {				
      Theta (cell) = soil_water.Theta (cell);
      h (cell) =  soil_water.h (cell);
      h_ice (cell) = soil_water.h_ice (cell);
      S (cell) =  soil_water.S_sum (cell);
      S_vol (cell) = S (cell) * geo.cell_volume (cell);
      if (use_forced_T)
	T (cell) = forced_T;
      else 
	T (cell) = soil_heat.T (cell); 
      h_lysimeter (cell) = geo.zplus (cell) - geo.cell_z (cell);
    }

  // Remember old value.
  Theta_error = Theta;

  // Start time loop 
  double time_left = dt;	// How much of the large time step left.
  double ddt = dt;		// We start with small == large time step.
  int number_of_time_step_reductions = 0;
  int iterations_with_this_time_step = 0;
  

  int n_small_time_steps = 0;
  
  while (time_left > 0.0)
    {
      if (ddt > time_left)
	ddt = time_left;

      std::ostringstream tmp_ddt;
      tmp_ddt << "Time t = " << (dt - time_left) 
              << "; ddt = " << ddt
              << "; steps " << n_small_time_steps 
              << "; time left = " << time_left;
      Treelog::Open nest (msg, tmp_ddt.str ());

      if (n_small_time_steps > 0
          && (n_small_time_steps%msg_number_of_small_time_steps) == 0)
        {
          msg.touch ();
          msg.flush ();
        }
      
      n_small_time_steps++;
      if (n_small_time_steps > max_number_of_small_time_steps) 
        {
          msg.debug ("Too many small timesteps");
          throw "Too many small timesteps";
        }
      
      // Initialization for each small time step.

      if (debug > 0)
	{
	  std::ostringstream tmp;
	  tmp << "h = " << h << "\n";
	  tmp << "Theta = " << Theta;
	  msg.message (tmp.str ());
	}

      int iterations_used = 0;
      h_previous = h;
      Theta_previous = Theta;

      if (debug == 5)
	{
	  std::ostringstream tmp;
	  tmp << "Remaining water at start: " << remaining_water;
	  msg.message (tmp.str ());
	}

      ublas::vector<double> h_conv;

      for (size_t cell = 0; cell != cell_size ; ++cell)
        active_lysimeter[cell] = h (cell) > h_lysimeter (cell);

      for (size_t edge = 0; edge != edge_size ; ++edge)
        {
          Kold[edge] = find_K_edge (soil, geo, edge, h, h_ice, h_previous, T);
          Ksum [edge] = 0.0;
        }

      std::vector<top_state> state (edge_above.size (), top_undecided);
      
      // We try harder with smaller timesteps.
      const int max_loop_iter 
        = max_iterations * (number_of_time_step_reductions 
                            * max_iterations_timestep_reduction_factor + 1);
      do // Start iteration loop
	{
	  h_conv = h;
	  iterations_used++;
          

          std::ostringstream tmp_conv;
          tmp_conv << "Convergence " << iterations_used; 
          Treelog::Open nest (msg, tmp_conv.str ());
          if (debug == 7)
            msg.touch ();

	  // Calculate conductivity - The Hansen method
	  for (size_t e = 0; e < edge_size; e++)
	    {
              Ksum[e] += find_K_edge (soil, geo, e, h, h_ice, h_previous, T);
              Kedge[e] = (Ksum[e] / (iterations_used  + 0.0)+ Kold[e]) / 2.0;
	    }

	  //Initialize diffusive matrix
	  Solver::Matrix diff (cell_size);
	  // diff = ublas::zero_matrix<double> (cell_size, cell_size);
	  diffusion (geo, Kedge, diff);

	  //Initialize gravitational matrix
	  ublas::vector<double> grav (cell_size); //ublass compatibility
	  grav = ublas::zero_vector<double> (cell_size);
	  gravitation (geo, Kedge, grav);

	  // Boundary matrices and vectors
	  ublas::banded_matrix<double>  Dm_mat (cell_size, cell_size, 
                                                0, 0); // Dir bc
	  Dm_mat = ublas::zero_matrix<double> (cell_size, cell_size);
	  ublas::vector<double>  Dm_vec (cell_size); // Dir bc
	  Dm_vec = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> Gm (cell_size); // Dir bc
	  Gm = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> B (cell_size); // Neu bc 
	  B = ublas::zero_vector<double> (cell_size);

	  lowerboundary (geo, groundwater, active_lysimeter, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, msg);
	  upperboundary (geo, soil, T, surface, state, remaining_water, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, ddt, debug, msg, dt);
          Darcy (geo, Kedge, h, dq); //for calculating drain fluxes 


	  //Initialize water capacity  matrix
	  ublas::banded_matrix<double> Cw (cell_size, cell_size, 0, 0);
	  for (size_t c = 0; c < cell_size; c++)
	    Cw (c, c) = soil.Cw2 (c, h[c]);
	  
          std::vector<double> h_std (cell_size);
          //ublas vector -> std vector 
          std::copy(h.begin (), h.end (), h_std.begin ());

#ifdef TEST_OM_DEN_ER_BRUGT
          for (size_t cell = 0; cell != cell_size ; ++cell) 
            {				
              S_macro (cell) = (S_matrix[cell] + S_drain[cell]) 
                * geo.cell_volume (cell);
            }
#endif

	  //Initialize sum matrix
	  Solver::Matrix summat (cell_size);  
	  noalias (summat) = diff + Dm_mat;

	  //Initialize sum vector
	  ublas::vector<double> sumvec (cell_size);  
	  sumvec = grav + B + Gm + Dm_vec - S_vol
#ifdef TEST_OM_DEN_ER_BRUGT
            - S_macro
#endif
            ; 

	  // QCw is shorthand for Qmatrix * Cw
	  Solver::Matrix Q_Cw (cell_size);
	  noalias (Q_Cw) = prod (Qmat, Cw);

	  //Initialize A-matrix
	  Solver::Matrix A (cell_size);  
	  noalias (A) = (1.0 / ddt) * Q_Cw - summat;  

	  // Q_Cw_h is shorthand for Qmatrix * Cw * h
	  const ublas::vector<double> Q_Cw_h = prod (Q_Cw, h);

	  //Initialize b-vector
	  ublas::vector<double> b (cell_size);  
	  //b = sumvec + (1.0 / ddt) * (Qmatrix * Cw * h + Qmatrix *(Wxx-Wyy));
	  b = sumvec + (1.0 / ddt) * (Q_Cw_h
				      + prod (Qmat, Theta_previous-Theta));

	  // Force active drains to zero h.
          drain (geo, drain_cell, drain_water_level,
		 h, Theta_previous, Theta, S_vol,
#ifdef TEST_OM_DEN_ER_BRUGT
                 S_macro,
#endif
                 dq, ddt, drain_cell_on, A, b, debug, msg);  
          
          try {
            solver->solve (A, b, h); // Solve Ah=b with regard to h.
          } catch (const char *const error) {
              std::ostringstream tmp;
              tmp << "Could not solve equation system: " << error;
              msg.warning (tmp.str ());
              // Try smaller timestep.
              iterations_used = max_loop_iter + 100;
              break;
          }

	  for (int c=0; c < cell_size; c++) // update Theta 
	    Theta (c) = soil.Theta (c, h (c), h_ice (c)); 

	  if (debug > 1)
	    {
	      std::ostringstream tmp;
	      tmp << "Time left = " << time_left << ", ddt = " << ddt 
		  << ", iteration = " << iterations_used << "\n";
	      tmp << "B = " << B << "\n";
	      tmp << "h = " << h << "\n";
	      tmp << "Theta = " << Theta;
	      msg.message (tmp.str ());
	    }
          
          for (int c=0; c < cell_size; c++)
            {
              if (h (c) < min_pressure_potential || h (c) > max_pressure_potential)
                {
                  std::ostringstream tmp;
                  tmp << "Pressure potential out of realistic range, h[" 
                      << c << "] = " << h (c);
                  msg.debug (tmp.str ());
                  iterations_used = max_loop_iter + 100;
                  break;
                } 
            }
        }

      while (!converges (h_conv, h) && iterations_used <= max_loop_iter);
      

      if (iterations_used > max_loop_iter)
	{
          number_of_time_step_reductions++;
          
	  if (number_of_time_step_reductions > max_time_step_reductions)
            {
              msg.debug ("Could not find solution");
              throw "Could not find solution";
            }

          iterations_with_this_time_step = 0;
	  ddt /= time_step_reduction;
	  h = h_previous;
	  Theta = Theta_previous;
	}
      else
	{
          // Update dq for new h.
	  ublas::banded_matrix<double>  Dm_mat (cell_size, cell_size, 
                                                0, 0); // Dir bc
	  Dm_mat = ublas::zero_matrix<double> (cell_size, cell_size);
	  ublas::vector<double>  Dm_vec (cell_size); // Dir bc
	  Dm_vec = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> Gm (cell_size); // Dir bc
	  Gm = ublas::zero_vector<double> (cell_size);
	  ublas::vector<double> B (cell_size); // Neu bc 
	  B = ublas::zero_vector<double> (cell_size);
	  lowerboundary (geo, groundwater, active_lysimeter, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, msg);
	  upperboundary (geo, soil, T, surface, state, remaining_water, h,
                         Kedge,
                         dq, Dm_mat, Dm_vec, Gm, B, ddt, debug, msg, dt);
          Darcy (geo, Kedge, h, dq);

#ifdef TEST_OM_DEN_ER_BRUGT
          // update macropore flow components 
          for (int c = 0; c < cell_size; c++)
            {
              S_drain_sum[c] += S_drain[c] * ddt/dt;
              S_matrix_sum[c] += S_matrix[c] * ddt/dt;
            }
#endif

          std::vector<double> h_std_new (cell_size);
          std::copy(h.begin (), h.end (), h_std_new.begin ());

	  // Update remaining_water.
	  for (size_t i = 0; i < edge_above.size (); i++)
	    {
	      const int edge = edge_above[i];
	      const int cell = geo.edge_other (edge, Geometry::cell_above);
	      const double out_sign = (cell == geo.edge_from (edge))
		? 1.0 : -1.0;
	      remaining_water[i] += out_sign * dq (edge) * ddt;
              daisy_assert (std::isfinite (dq (edge)));
	    }

	  if (debug == 5)
	    {
	      std::ostringstream tmp;
	      tmp << "Remaining water at end: " << remaining_water;
	      msg.message (tmp.str ());
	    }

	  // Contribution to large time step.
          daisy_assert (std::isnormal (dt));
          daisy_assert (std::isnormal (ddt));
	  q += dq * ddt / dt;
          for (size_t e = 0; e < edge_size; e++)
            {
              daisy_assert (std::isfinite (dq (e)));
              daisy_assert (std::isfinite (q (e)));
            }
          for (size_t e = 0; e < edge_size; e++)
            {
              daisy_assert (std::isfinite (dq (e)));
              daisy_assert (std::isfinite (q (e)));
            }

	  time_left -= ddt;
	  iterations_with_this_time_step++;

	  if (iterations_with_this_time_step > time_step_reduction)
	    {
	      number_of_time_step_reductions--;
	      iterations_with_this_time_step = 0;
	      ddt *= time_step_reduction;
	    }
	}
      // End of small time step.
    }

  // Mass balance.
  // New = Old - S * dt + q_in * dt - q_out * dt + Error =>
  // 0 = Old - New - S * dt + q_in * dt - q_out * dt + Error
  Theta_error -= Theta;         // Old - New
  Theta_error -= S * dt;
#ifdef TEST_OM_DEN_ER_BRUGT
  for (size_t c = 0; c < cell_size; c++)
    Theta_error (c) -= (S_matrix_sum[c] + S_drain_sum[c]) * dt;
#endif
  
  for (size_t edge = 0; edge != edge_size; ++edge) 
    {
      const int from = geo.edge_from (edge);
      const int to = geo.edge_to (edge);
      const double flux = q (edge) * geo.edge_area (edge) * dt;
      if (geo.cell_is_internal (from))
        Theta_error (from) -= flux / geo.cell_volume (from);
      if (geo.cell_is_internal (to))
        Theta_error (to) += flux / geo.cell_volume (to);
    }

  // Find drain sink from mass balance.
#ifdef TEST_OM_DEN_ER_BRUGT
  std::fill(S_drain.begin (), S_drain.end (), 0.0);
#else
  std::vector<double> S_drain (cell_size);
#endif
  for (size_t i = 0; i < drain_cell.size (); i++)
    {
      const size_t cell = drain_cell[i];
      S_drain[cell] = Theta_error (cell) / dt;
      Theta_error (cell) -= S_drain[cell] * dt;
    }

  if (debug == 2)
    {
      double total_error = 0.0;
      double total_abs_error = 0.0;
      double max_error = 0.0;
      int max_cell = -1;
      for (size_t cell = 0; cell != cell_size; ++cell) 
        {
          const double volume = geo.cell_volume (cell);
          const double error = Theta_error (cell);
          total_error += volume * error;
          total_abs_error += std::fabs (volume * error);
          if (std::fabs (error) > std::fabs (max_error))
            {
              max_error = error;
              max_cell = cell;
            }
        }
      std::ostringstream tmp;
      tmp << "Total error = " << total_error << " [cm^3], abs = " 
	  << total_abs_error << " [cm^3], max = " << max_error << " [] in cell " 
	  << max_cell;
      msg.message (tmp.str ());
    }
  
  // Make it official.
  for (size_t cell = 0; cell != cell_size; ++cell) 
    soil_water.set_content (cell, h (cell), Theta (cell));
  
#ifdef TEST_OM_DEN_ER_BRUGT
  soil_water.add_tertiary_sink (S_matrix_sum);
  soil_water.drain (S_drain_sum, msg);
#endif


  for (size_t edge = 0; edge != edge_size; ++edge) 
    {
      daisy_assert (std::isfinite (q[edge]));
      soil_water.set_flux (edge, q[edge]);
    }

  soil_water.drain (S_drain, msg);

  // End of large time step.
}
示例#8
0
void 
MovementSolute::secondary_flow (const Geometry& geo, 
                                const std::vector<double>& Theta_old,
                                const std::vector<double>& Theta_new,
                                const std::vector<double>& q,
                                const symbol name,
                                const std::vector<double>& S, 
                                const std::map<size_t, double>& J_forced,
                                const std::map<size_t, double>& C_border,
                                std::vector<double>& M, 
                                std::vector<double>& J, 
                                const double dt,
                                Treelog& msg)
{
  const size_t cell_size = geo.cell_size ();
  const size_t edge_size = geo.edge_size ();
  
  // Full timstep left.
  daisy_assert (dt > 0.0);
  double time_left = dt;

  // Initial water content.
  std::vector<double> Theta (cell_size);
  for (size_t c = 0; c < cell_size; c++)
    Theta[c] = Theta_old[c];

  // Small timesteps.
  for (;;)
    {
      // Are we done yet?
      const double min_timestep_factor = 1e-19;
      if (time_left < 0.1 * min_timestep_factor * dt)
        break;

      // Find new timestep.
      double ddt = time_left;
  
      // Limit timestep based on water flux.
      for (size_t e = 0; e < edge_size; e++)
        {
          const int cell = (q[e] > 0.0 ? geo.edge_from (e) : geo.edge_to (e));
          if (geo.cell_is_internal (cell) 
              && Theta[cell] > 1e-6 && M[cell] > 0.0)
            {
              const double loss_rate = std::fabs (q[e]) * geo.edge_area (e);
              const double content = Theta[cell] * geo.cell_volume (cell); 
              const double time_to_empty = content / loss_rate;
              if (time_to_empty < min_timestep_factor * dt)
                {
                  msg.warning ("Too fast water movement in secondary domain");
                  ddt = min_timestep_factor * dt;
                  break;
                }
              
              // Go down in timestep while it takes less than two to empty cell.
              while (time_to_empty < 2.0 * ddt)
                ddt *= 0.5;
            }
        }

      // Cell source.  Must be before transport to avoid negative values.
      for (size_t c = 0; c < cell_size; c++)
        M[c] += S[c] * ddt;

      // Find fluxes using new values (more stable).
      std::vector<double> dJ (edge_size, -42.42e42);
      for (size_t e = 0; e < edge_size; e++)
        {
          std::map<size_t, double>::const_iterator i = J_forced.find (e);
          if (i != J_forced.end ())
            // Forced flux.
            {
              dJ[e] = (*i).second;
              daisy_assert (std::isfinite (dJ[e]));
              continue;
            }

          const int edge_from = geo.edge_from (e);
          const int edge_to = geo.edge_to (e);
          const bool in_flux = q[e] > 0.0;
          int flux_from = in_flux ? edge_from : edge_to;
          double C_flux_from = -42.42e42;

          if (geo.cell_is_internal (flux_from))
            // Internal cell, use its concentration.
            {
              if (Theta[flux_from] > 1e-6 && M[flux_from] > 0.0)
                // Positive content in positive water.
                C_flux_from = M[flux_from] / Theta[flux_from];
              else
                // You can't cut the hair of a bald guy.
                C_flux_from = 0.0;
            }
          else
            {
              i = C_border.find (e);
              if (i != C_border.end ())
                // Specified by C_border.
                C_flux_from = (*i).second;
              else
                // Assume no gradient.
                {
                  const int flux_to = in_flux ? edge_to : edge_from;
                  daisy_assert (geo.cell_is_internal (flux_to));
                  if (Theta[flux_to] > 1e-6 && M[flux_to] > 0.0)
                    // Positive content in positive water.
                    C_flux_from = M[flux_to] / Theta[flux_to];
                  else
                    // You can't cut the hair of a bald guy.
                    C_flux_from = 0.0;
                }
            }

          // Convection.
          daisy_assert (std::isfinite (q[e]));
          daisy_assert (C_flux_from >= 0.0);
          dJ[e] = q[e] * C_flux_from;
          daisy_assert (std::isfinite (dJ[e]));
        }

      // Update values for fluxes.
      for (size_t e = 0; e < edge_size; e++)
        {
          const double value = ddt * dJ[e] * geo.edge_area (e);

          const int from = geo.edge_from (e);
          if (geo.cell_is_internal (from))
            M[from] -= value / geo.cell_volume (from);

          const int to = geo.edge_to (e);
          if (geo.cell_is_internal (to))
            M[to] += value / geo.cell_volume (to);

          J[e] += dJ[e] * ddt / dt;
        }

      // Update time left.
      time_left -= ddt;

      // Interpolate Theta.
      for (size_t c = 0; c < cell_size; c++)
        {
          const double left = time_left / dt;
          const double done = 1.0 - left;
          Theta[c] = left * Theta_old[c] + done * Theta_new[c];
        }
    }
}
 void doIt (Daisy&, const Scope&, Treelog& out)
 { 
   out.warning (message.name ());
 }
示例#10
0
void
UZlr::tick (Treelog& msg, const GeometryVert& geo,
            const Soil& soil, const SoilHeat& soil_heat,
	    unsigned int first, const Surface& top, 
            const size_t top_edge,
	    unsigned int last, const Groundwater& bottom, 
            const size_t bottom_edge,
	    const std::vector<double>& S,
	    const std::vector<double>& h_old,
	    const std::vector<double>& Theta_old,
	    const std::vector<double>& h_ice,
	    std::vector<double>& h,
	    std::vector<double>& Theta,
            const size_t q_offset,
            std::vector<double>& q_base,
            const double dt)
{
  double *const q = &q_base[q_offset];
  double q_up = 0.0;
  double q_down = 0.0;
  const Surface::top_t top_type = top.top_type (geo, top_edge);

  if (top_type == Surface::soil)
    {
      // We have a forced pressure top, in the form of a ridge system.
      // Since LR only works with flux top, we use Darcy to simulate a
      // flux top between the first cell (with a forced pressure) and
      // the second cell, and then continue calculating with a flux
      // top from the second cell.
      const double dz = geo.cell_z (first) - geo.cell_z (first+1);
      const double dh = (h_old[first] - h_old[first+1]);
      const double K = std::min (soil.K (first, h_old[first], h_ice[first],
                                         soil_heat.T (first)),
                                 soil.K (first, h_old[first+1], h_ice[first+1],
                                         soil_heat.T (first+1)));
      q_up = -K * (dh/dz + 1.0);

      // We can safely ignore S[first], since the ridge system has
      // already incorporated it.
      first++;

      // New upper limit.
      q[first] = q_up;
    }
  else
    {
      // Limit flux by soil capacity.
      const double K_sat = soil.K (first, 0.0, h_ice[first], 
				   soil_heat.T (first));
      daisy_assert (K_sat > 0.0);

      if (top_type == Surface::forced_pressure)
	{
	  const double dz = 0.0 - geo.cell_z (first);
	  const double dh = top.h_top (geo, top_edge) - h_old[first];
	  q_up = q[first] = -K_sat * (dh/dz + 1.0);
	}
      else
        // Limited water or forced flux.
	q_up = q[first] = std::max (top.q_top (geo, top_edge, dt), -K_sat);
    }

  //  Use darcy for upward movement in the top.
  const bool use_darcy = (h_old[first] < h_fc) && (q_up > 0.0);

  // Intermediate cells.
  for (int i = first; i <= last; i++)
    {
      const double z = geo.cell_z (i);
      const double dz = geo.dz (i);
      const double Theta_sat = soil.Theta (i, 0.0, h_ice[i]);
      const double Theta_res = soil.Theta_res (i);
      const double h_min = pF2h (10.0);
      const double Theta_min = soil.Theta (i, h_min, h_ice[i]);
      double Theta_new = Theta_old[i] - q[i] * dt / dz - S[i] * dt;
      if (Theta_new < Theta_min)
        {
          // Extreme dryness.
          q[i+1] = (Theta_min - Theta_new) * dz / dt;
          Theta[i] = Theta_min;
          h[i] = h_min;
          daisy_assert (std::isfinite (h[i]));
          continue;
        }

      daisy_assert (std::isfinite (h_old[i]));
      const double h_new = Theta_new >= Theta_sat 
        ? std::max (h_old[i], 0.0)
        : soil.h (i, Theta_new);
      daisy_assert (std::isfinite (h_new));
      double K_new = soil.K (i, h_new, h_ice[i], soil_heat.T (i));

      // If we have free drainage bottom, we go for field capacity all
      // the way.  Otherwise, we assume groundwater start at the
      // bottom of the last cell, and attempt equilibrium from there.
      // This asumption is correct for lysimeter bottom, adequate for
      // pressure bottom (where groundwater table is in the last
      // cell), and wrong for forced flux (= pipe drained soil) where
      // the groundwater is usually much higher.  Still, it is better
      // than using h_fc.
      double h_lim;
      switch (bottom.bottom_type ())
        {
        case Groundwater::free_drainage:
          h_lim = h_fc;
          break;
        case Groundwater::pressure:
          h_lim = std::max (bottom.table () - z, h_fc);
          break;
        case Groundwater::lysimeter:
        default:
          h_lim = std::max (geo.zplus (last) - z, h_fc);
          break;
        }

      if (use_darcy && z > z_top && i < last && h_fc < h_ice[i] )
        // Dry earth, near top.  Use darcy to move water up.
        {
	  const double dist = z - geo.cell_z (i+1);
	  q[i+1] = std::max (K_new * ((h_old[i+1] - h_new) / dist - 1.0), 0.0);
          const double Theta_next = Theta_new + q[i+1] * dt / dz;
	  if (Theta_next > Theta_sat)
	    {
	      q[i+1] = (Theta_sat - Theta_new) * dz / dt;
	      Theta[i] = Theta_sat;
	      h[i] = std::max (0.0, h_new);
              daisy_assert (std::isfinite (h[i]));
	    }
	  else
	    {
	      Theta[i] = Theta_next;
	      h[i] = soil.h (i, Theta[i]);
              daisy_assert (std::isfinite (h[i]));
	    }
	}
      else if (h_new <= h_lim)
	// Dry earth, no water movement.
	{
	  if (Theta_new <= Theta_sat)
            {
              q[i+1] = 0.0;
              Theta[i] = Theta_new;
              h[i] = h_new;
              daisy_assert (std::isfinite (h[i]));
            }
          else 
            {
              q[i+1] = (Theta_sat - Theta_new) * dz / dt;
              Theta[i] = Theta_sat;
              h[i] = std::max (0.0, h_new);
              daisy_assert (std::isfinite (h[i]));
            }
	}
      else
	// Gravitational water movement.
	{
	  if (i < last)
	    {
	      // Geometric average K.
	      if (h_ice[i+1] < h_fc) // Blocked by ice.
		K_new = 0.0;
	      else
		K_new = sqrt (K_new * soil.K (i+1, h_old[i+1], h_ice[i+1],
					      soil_heat.T (i+1)));
	    }
	  else if (bottom.bottom_type () == Groundwater::forced_flux)
	    K_new = -bottom.q_bottom (bottom_edge);
          // else keep K_new from the node.
            
	  const double Theta_lim = soil.Theta (i, h_lim, h_ice[i]);
	  const double Theta_next = Theta_new - K_new * dt / dz;

	  if (Theta_next < Theta_lim)
	    {
              if (Theta_lim < Theta_new)
                {
                  q[i+1] = (Theta_lim - Theta_new) * dz / dt;
                  Theta[i] = Theta_lim;
                  h[i] = h_lim;
                  daisy_assert (std::isfinite (h[i]));
                }
              else
                {
                  q[i+1] = 0.0;
                  Theta[i] = Theta_new;
                  h[i] = h_new;
                  daisy_assert (std::isfinite (h[i]));
                }
	    }
	  else if (Theta_next >= Theta_sat)
	    {
	      q[i+1] = (Theta_sat - Theta_new) * dz / dt;
	      Theta[i] = Theta_sat;
	      h[i] = std::max (h_old[i], 0.0);
              daisy_assert (std::isfinite (h[i]));
	    }
	  else
	    {
	      q[i+1] = -K_new;
	      Theta[i] = Theta_next;
	      h[i] = soil.h (i, Theta[i]);
              daisy_assert (std::isfinite (h[i]));
	    }
	}
      daisy_assert (std::isfinite (h[i]));
      daisy_assert (std::isfinite (Theta[i]));
      daisy_assert (std::isfinite (q[i+1]));
      daisy_assert (Theta[i] <= Theta_sat);
      daisy_assert (Theta[i] > Theta_res);
    }

  // Lower border.
  q_down = q[last + 1];

  if (bottom.bottom_type () == Groundwater::forced_flux)
    // Ensure forced bottom.
    {
      double extra_water = (bottom.q_bottom (bottom_edge) - q_down) * dt;

      for (int i = last; true; i--)
	{
	  q[i+1] += extra_water / dt;
	  if (i < static_cast<int> (first))
            {
              if (extra_water > 0.0 && overflow_warn)
                {
                  msg.warning ("Soil profile saturated, water flow to surface");
                  overflow_warn = false;
                }
              break;
            }
	  const double dz = geo.dz (i);
          const double h_min = pF2h (10.0);
          const double Theta_min = soil.Theta (i, h_min, h_ice[i]);
	  const double Theta_sat = soil.Theta (i, 0.0, h_ice[i]);
	  Theta[i] += extra_water / dz;
          if (Theta[i] <= Theta_min)
            {
              extra_water = (Theta[i] - Theta_min) * dz;
	      Theta[i] = Theta_min;
	      h[i] = h_min;
            }
	  else if (Theta[i] <= Theta_sat)
	    {
	      extra_water = 0;
	      h[i] = soil.h (i, Theta[i]);
              break;
	    }
	  else
	    {
	      extra_water = (Theta[i] - Theta_sat) * dz;
	      Theta[i] = Theta_sat;
	      h[i] = 0.0;
	    }
	}
      q_up = q[first];
      q_down = q[last + 1];
    }

  // Saturated pressure.
  double table = geo.cell_z (last) + h[last];
  for (int i = last; i > first; i--)
    if (h[i] < 0.0)
      {
        table = geo.cell_z (i) + h[i];
        break;
      }
  for (int i = last; i > first; i--)
    if (geo.cell_z (i) < table)
      {
        daisy_assert (h[i] >= 0.0);
        h[i] = table - geo.cell_z (i);
        daisy_assert (h[i] >= 0.0);
      }
    else
      break;

  // Check mass conservation.
  double total_old = 0.0;
  double total_new = 0.0;
  double total_S = 0.0;
  for (unsigned int i = first; i <= last; i++)
    {
      const double Theta_sat = soil.Theta (i, 0.0, 0.0);
      daisy_assert (Theta[i] <= Theta_sat + 1e-10);
      total_old += geo.dz (i) * Theta_old[i];
      total_new += geo.dz (i) * Theta[i];
      total_S += geo.dz (i) * S[i];
      daisy_assert (std::isfinite (Theta[i]));
      if (Theta[i] <= 0.0)
        {
          std::ostringstream tmp;
          tmp << "Theta[" << i << "] = " << Theta[i];
          daisy_bug (tmp.str ());
          Theta[i] = 1e-9;
        }
    }
  daisy_balance (total_old, total_new, (-q_up + q_down - total_S) * dt);
}
示例#11
0
double
PhotoFarquhar::assimilate (const Units& units,
                           const double ABA, const double psi_c,
                           const double ec /* Canopy Vapour Pressure [Pa] */, 
                           const double gbw_ms /* Boundary layer [m/s] */,
			   const double CO2_atm, const double O2_atm, 
                           const double Ptot /* [Pa] */,
			   const double, const double Tc, const double Tl,
                           const double cropN,
			   const std::vector<double>& PAR, 
			   const std::vector<double>& PAR_height,
			   const double PAR_LAI,
			   const std::vector<double>& fraction,
                           const double,
			   CanopyStandard& canopy,
			   Phenology& development,
			   Treelog& msg) 
{
  const double h_x = std::fabs (psi_c) * 1.0e-4  /* [MPa/cm] */; // MPa
  // sugar production [gCH2O/m2/h] by canopy photosynthesis.
  const PLF& LAIvsH = canopy.LAIvsH;
  const double DS = development.DS;

  
  // One crop: daisy_assert (approximate (canopy.CAI, bioclimate.CAI ()));
  if (!approximate (LAIvsH (canopy.Height), canopy.CAI))
    {
      std::ostringstream tmp;
      tmp << "Bug: CAI below top: " << LAIvsH (canopy.Height)
	  << " Total CAI: " << canopy.CAI << "\n";
      canopy.CanopyStructure (DS);
      tmp << "Adjusted: CAI below top: " << LAIvsH (canopy.Height)
	  << " Total CAI: " << canopy.CAI;
      msg.error (tmp.str ());
    }
 
  // CAI (total)  below the current leaf layer.
  double prevLA = LAIvsH (PAR_height[0]); 

  // Assimilate produced by canopy photosynthesis
  double Ass_ = 0.0;

  // Accumulated CAI, for testing purposes.
  double accCAI =0.0;

  // Number of computational intervals in the canopy.
  const int No = PAR.size () - 1;
  daisy_assert (No > 0);
  daisy_assert (No == PAR_height.size () - 1);
  
  // N-distribution and photosynthetical capacity 
  std::vector<double> rubisco_Ndist (No, 0.0);
  std::vector<double> crop_Vm_total (No, 0.0);

  // Photosynthetic capacity (for logging)
  while (Vm_vector.size () < No)
    Vm_vector.push_back (0.0);
  // Potential electron transport rate (for logging)
  while (Jm_vector.size () < No)
    Jm_vector.push_back (0.0);
  // Photosynthetic N-leaf distribution (for logging)
  while (Nleaf_vector.size () < No)
    Nleaf_vector.push_back (0.0);
  // Brutto assimilate production (for logging)
  while (Ass_vector.size () < No)
    Ass_vector.push_back (0.0);
  // LAI (for logging)
  while (LAI_vector.size () < No)
    LAI_vector.push_back (0.0);

  rubiscoNdist->rubiscoN_distribution (units,
                                       PAR_height, prevLA, DS,
                                       rubisco_Ndist/*[mol/m²leaf]*/, 
				       cropN /*[g/m²area]*/, msg);
  crop_Vmax_total (rubisco_Ndist, crop_Vm_total);  


  // Net photosynthesis (for logging)
  while (pn_vector.size () < No)
    pn_vector.push_back (0.0);//

  // Stomata CO2 pressure (for logging)
  while (ci_vector.size () < No)
    ci_vector.push_back (0.0);//[Pa]

  // Leaf surface CO2 pressure  (for logging)
  while (cs_vector.size () < No)
    cs_vector.push_back (0.0);//

  // Leaf surface relative humidity (for logging)
  while (hs_vector.size () < No)
    hs_vector.push_back (0.0);//[]

  // Stomata conductance (for logging)
  while (gs_vector.size () < No)
    gs_vector.push_back (0.0);//[m/s]
     
  // Photosynthetic effect of Xylem ABA and crown water potential.
  Gamma = Arrhenius (Gamma25, Ea_Gamma, Tl); // [Pa]
  const double estar = FAO::SaturationVapourPressure (Tl); // [Pa]
  daisy_assert (gbw_ms >= 0.0);
  gbw = Resistance::ms2molly (Tl, Ptot, gbw_ms);
  daisy_assert (gbw >= 0.0);
  // CAI in each interval.
  const double dCAI = PAR_LAI / No;
  
  for (int i = 0; i < No; i++)
    {
      const double height = PAR_height[i+1];
      daisy_assert (height < PAR_height[i]);

      // Leaf Area index for a given leaf layer
      const double LA = prevLA - LAIvsH (height);
      daisy_assert (LA >= 0.0);

      prevLA = LAIvsH (height);
      accCAI += LA;

      if (LA * fraction [i] > 0)
	{  
	  // PAR in mol/m2/s = PAR in W/m2 * 0.0000046
	  const double dPAR = (PAR[i] - PAR[i+1])/dCAI * 0.0000046; //W/m2->mol/m²leaf/s

          if (dPAR < 0)
            {
              std::stringstream tmp;
              tmp << "Negative dPAR (" << dPAR
                  << " [mol/m^2 leaf/h])" << " PAR[" << i << "] = " << PAR[i]
                  << " PAR[" << i+1 << "] = " << PAR[i+1] 
                  << " dCAI = " << dCAI
                  << " LA = " << LA
                  << " fraction[" << i << "] = " << fraction [i];
              msg.debug (tmp.str ());
              continue;
            }

	  // log variable
	  PAR_ += dPAR * dCAI * 3600.0; //mol/m²area/h/fraction

	  // Photosynthetic rubisco capacity 
	  const double vmax25 = crop_Vm_total[i]*fraction[i];//[mol/m²leaf/s/fracti.]
	  daisy_assert (vmax25 >= 0.0);

	  // leaf respiration
	  const double rd = respiration_rate(vmax25, Tl);
	  daisy_assert (rd >= 0.0);

	  //solving photosynthesis and stomatacondctance model for each layer
          double& pn = pn_vector[i];
	  double ci  = 0.5 * CO2_atm;//first guess for ci, [Pa]
          double& hs = hs_vector[i];
          hs = 0.5;              // first guess of hs []
          double& cs = cs_vector[i];
          //first gues for stomatal cond,[mol/s/m²leaf]
	  double gsw = Stomatacon->minimum () * 2.0;
	  // double gsw = 2 * b; // old value
	  const int maxiter = 150;
	  int iter = 0;
	  double lastci;
          double lasths;
          double lastgs;
	  do
	    {
	      lastci = ci; //Stomata CO2 pressure 
              lasths = hs;
              lastgs = gs;

	      //Calculating ci and "net"photosynthesis
	      CxModel(CO2_atm, O2_atm, Ptot, 
                      pn, ci, dPAR /*[mol/m²leaf/s]*/, 
                      gsw, gbw, Tl, vmax25, rd, msg);//[mol/m²leaf/s/fraction]

              // Vapour pressure at leaf surface. [Pa]
              const double es = (gsw * estar + gbw * ec) / (gsw + gbw);
              // Vapour defecit at leaf surface. [Pa]
              const double Ds = bound (0.0, estar - es, estar);
              // Relative humidity at leaf surface. []
              hs = es / estar;
              const double hs_use = bound (0.0, hs, 1.0);

              // Boundary layer resistance. [s*m2 leaf/mol]
              daisy_assert (gbw >0.0);
              const double rbw = 1./gbw;   //[s*m2 leaf/mol]
  
              // leaf surface CO2 [Pa]

              // We really should use CO2_canopy instead of CO2_atm
              // below.  Adding the resitence from canopy point to
              // atmostphere is not a good workaround, as it will
              // ignore sources such as the soil and stored CO2 from
              // night respiration.
              cs = CO2_atm - (1.4 * pn * Ptot * rbw); //[Pa] 
              daisy_assert (cs > 0.0);

              //stomatal conductance
              gsw = Stomatacon->stomata_con (ABA /*g/cm^3*/,
                                             h_x /* MPa */, 
                                             hs_use /*[]*/,
                                             pn /*[mol/m²leaf/s]*/, 
                                             Ptot /*[Pa]*/, 
                                             cs /*[Pa]*/, Gamma /*[Pa]*/, 
                                             Ds/*[Pa]*/,
                                             msg); //[mol/m²leaf/s] 

	      iter++;
	      if(iter > maxiter)
		{
		  std::ostringstream tmp;
		  tmp << "total iterations in assimilation model exceed "
                      << maxiter;
		  msg.warning (tmp.str ());
		  break;
		}
	    }
	  // while (std::fabs (lastci-ci)> 0.01);
          while (std::fabs (lastci-ci)> 0.01
                 || std::fabs (lasths-hs)> 0.01
                 || std::fabs (lastgs-gs)> 0.01);

	  // Leaf brutto photosynthesis [gCO2/m2/h] 
	  /*const*/ double pn_ = (pn+rd) * molWeightCO2 * 3600.0;//mol CO2/m²leaf/s->g CO2/m²leaf/h
	  const double rd_ = (rd) * molWeightCO2 * 3600.0;   //mol CO2/m²/s->g CO2/m²/h
	  const double Vm_ = V_m(vmax25, Tl); //[mol/m² leaf/s/fraction]
	  const double Jm_ = J_m(vmax25, Tl); //[mol/m² leaf/s/fraction]

	  if (pn_ < 0.0)
            {
              std::stringstream tmp;
              tmp << "Negative brutto photosynthesis (" << pn_ 
                  << " [g CO2/m²leaf/h])" << " pn " << pn << " rd " << rd
                  << " CO2_atm " << CO2_atm << "  O2_atm " <<  O2_atm 
                  << "  Ptot " <<  Ptot << "  pn " <<  pn << "  ci " <<  ci 
                  << "  dPAR " <<  dPAR << "  gsw " <<  gsw 
                  << "  gbw " <<  gbw << "  Tl " <<  Tl 
                  << "  vmax25 " <<  vmax25 << "  rd " <<  rd; 
              msg.error (tmp.str ());
              pn_ = 0.0;
            }
	  Ass_ += LA * pn_; // [g/m²area/h] 
	  Res += LA * rd_;  // [g/m²area/h] 
	  daisy_assert (Ass_ >= 0.0);

	  //log variables:
	  Ass_vector[i]+= pn_* (molWeightCH2O / molWeightCO2) * LA;//[g CH2O/m²area/h]
	  Nleaf_vector[i]+= rubisco_Ndist[i] * LA * fraction[i]; //[mol N/m²area]OK
	  gs_vector[i]+= gsw /* * LA * fraction[i] */;     //[mol/m² area/s]
	  ci_vector[i]+= ci /* * fraction[i] */;  //[Pa] OK
	  Vm_vector[i]+= Vm_ * 1000.0 * LA * fraction[i]; //[mmol/m² area/s]OK
	  Jm_vector[i]+= Jm_ * 1000.0 * LA * fraction[i]; //[mmol/m² area/s]OK
	  LAI_vector[i] += LA * fraction[i];//OK
	  
	  ci_middel += ci * fraction[i]/(No + 0.0);// [Pa]   OK
	  gs += LA * gsw * fraction[i]; 
	  Ass += LA * pn_ * (molWeightCH2O / molWeightCO2);//[g CH2O/m2 area/h] OK
	  LAI += LA * fraction[i];//OK
	  Vmax += 1000.0 * LA * fraction[i] * Vm_;   //[mmol/m² area/s]
	  jm += 1000.0 * LA * fraction[i] * Jm_;     //[mmol/m² area/s]
	  leafPhotN += rubisco_Ndist[i] * LA *fraction[i]; //[mol N/m²area]; 
	  fraction_total += fraction[i]/(No + 0.0);
	}
    }
  daisy_assert (approximate (accCAI, canopy.CAI));
  daisy_assert (Ass_ >= 0.0);

  // Omregning af gs(mol/(m2s)) til gs_ms (m/s) foretages ved 
  // gs_ms = gs * (R * T)/P:
  gs_ms = Resistance::molly2ms (Tl, Ptot, gs);
  return (molWeightCH2O / molWeightCO2)* Ass_;    // Assimilate [g CH2O/m2/h]
}