VarPtr PressurelessStokesFormulation::u_hat(int i) { if (i > _spaceDim) { TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "i must be less than or equal to _spaceDim"); } VarFactoryPtr vf = _stokesBF->varFactory(); switch (i) { case 1: return vf->traceVar(S_U1_HAT); case 2: return vf->traceVar(S_U2_HAT); case 3: return vf->traceVar(S_U3_HAT); } TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "unhandled i value"); }
ConfusionManufacturedSolution::ConfusionManufacturedSolution(double epsilon, double beta_x, double beta_y) { _epsilon = epsilon; _beta_x = beta_x; _beta_y = beta_y; // set the class variables from ExactSolution: // _bc = Teuchos::rcp(this,false); // false: don't let the RCP own the memory // _rhs = Teuchos::rcp(this,false); BFPtr bf = ConfusionBilinearForm::confusionBF(epsilon,beta_x,beta_y); _bilinearForm = bf; VarFactoryPtr vf = bf->varFactory(); VarPtr u = vf->fieldVar(ConfusionBilinearForm::S_U); VarPtr sigma1 = vf->fieldVar(ConfusionBilinearForm::S_SIGMA_1); VarPtr sigma2 = vf->fieldVar(ConfusionBilinearForm::S_SIGMA_2); _u_hat = vf->traceVar(ConfusionBilinearForm::S_U_HAT); _beta_n_u_minus_sigma_hat = vf->fluxVar(ConfusionBilinearForm::S_BETA_N_U_MINUS_SIGMA_HAT); _v = vf->testVar(ConfusionBilinearForm::S_V, HGRAD); FunctionPtr u_exact = this->u(); FunctionPtr sigma_exact = epsilon * u_exact->grad(); FunctionPtr u_exact_laplacian = u_exact->dx()->dx() + u_exact->dy()->dy(); _rhs = RHS::rhs(); FunctionPtr f = - _epsilon * u_exact_laplacian + _beta_x * u_exact->dx() + _beta_y * u_exact->dy(); _rhs->addTerm( f * _v ); _bc = BC::bc(); _bc->addDirichlet(_u_hat, SpatialFilter::allSpace(), u_exact); FunctionPtr beta = Function::vectorize(Function::constant(_beta_x), Function::constant(_beta_y)); FunctionPtr n = Function::normal(); FunctionPtr one_skeleton = Function::meshSkeletonCharacteristic(); // allows restriction to skeleton FunctionPtr sigma_flux_exact = beta * ( n * u_exact - sigma_exact * one_skeleton); this->setSolutionFunction(u, u_exact); this->setSolutionFunction(sigma1, sigma_exact->x()); this->setSolutionFunction(sigma2, sigma_exact->y()); this->setSolutionFunction(_u_hat, u_exact); this->setSolutionFunction(_beta_n_u_minus_sigma_hat, sigma_flux_exact); }
PoissonExactSolution::PoissonExactSolution(PoissonExactSolutionType type, int polyOrder, bool useConformingTraces) { // poly order here means that of phi _polyOrder = polyOrder; _type = type; _bf = PoissonBilinearForm::poissonBilinearForm(useConformingTraces); this->_bilinearForm = _bf; FunctionPtr phi_exact = phi(); VarFactoryPtr vf = _bf->varFactory(); VarPtr psi_hat_n = vf->fluxVar(PoissonBilinearForm::S_PSI_HAT_N); VarPtr phi_hat = vf->traceVar(PoissonBilinearForm::S_PHI_HAT); VarPtr phi = vf->fieldVar(PoissonBilinearForm::S_PHI); VarPtr psi_1 = vf->fieldVar(PoissonBilinearForm::S_PSI_1); VarPtr psi_2 = vf->fieldVar(PoissonBilinearForm::S_PSI_2); VarPtr q = vf->testVar(PoissonBilinearForm::S_Q, HGRAD); FunctionPtr psi_exact = phi_exact->grad(); FunctionPtr n = Function::normal(); this->setSolutionFunction(phi, phi_exact); this->setSolutionFunction(psi_1, psi_exact->x()); this->setSolutionFunction(psi_2, psi_exact->y()); this->setSolutionFunction(phi_hat, phi_exact); this->setSolutionFunction(psi_hat_n, psi_exact * n); SpatialFilterPtr wholeBoundary = SpatialFilter::allSpace(); _rhs = RHS::rhs(); FunctionPtr f = phi_exact->dx()->dx() + phi_exact->dy()->dy(); _rhs->addTerm(f * q); setUseSinglePointBCForPHI(false, -1); // sets _bc }
VarPtr PoissonFormulation::phi_hat() { VarFactoryPtr vf = _poissonBF->varFactory(); return vf->traceVar(S_PHI_HAT); }
bool LinearTermTests::testMixedTermConsistency() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 1; int pToAdd = 1; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 1; int horizontalCells = nCells, verticalCells = nCells; // create a pointer to a new mesh: Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); // DofOrderingPtr testOrder = elemType->testOrderPtr; BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh, true)); LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual vector<double> e1(2); // (1,0) vector<double> e2(2); // (0,1) e1[0] = 1; e2[1] = 1; FunctionPtr n = Function::normal(); FunctionPtr X = Function::xn(1); FunctionPtr Y = Function::yn(1); FunctionPtr testFxn1 = X; FunctionPtr testFxn2 = Y; FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy(); FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2; integrandIBP->addTerm(vectorTest*n*v + -vectorTest*v->grad()); // boundary term // define dummy IP to initialize riesz rep class, but just integrate RHS IPPtr dummyIP = Teuchos::rcp(new IP); dummyIP->addTerm(v); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, dummyIP, integrandIBP)); map<GlobalIndexType,FieldContainer<double> > rieszRHS = riesz->integrateFunctional(); set<GlobalIndexType> cellIDs = myMesh->cellIDsInPartition(); for (set<GlobalIndexType>::iterator cellIDIt=cellIDs.begin(); cellIDIt !=cellIDs.end(); cellIDIt++) { GlobalIndexType cellID = *cellIDIt; ElementTypePtr elemTypePtr = myMesh->getElementType(cellID); DofOrderingPtr testOrderingPtr = elemTypePtr->testOrderPtr; int numTestDofs = testOrderingPtr->totalDofs(); BasisCachePtr basisCache = BasisCache::basisCacheForCell(myMesh, cellID, true); FieldContainer<double> rhsIBPValues(1,numTestDofs); integrandIBP->integrate(rhsIBPValues, testOrderingPtr, basisCache); FieldContainer<double> rieszValues(1,numTestDofs); (riesz->getFunctional())->integrate(rieszValues, testOrderingPtr, basisCache); double maxDiff; double tol = 1e-13; FieldContainer<double> rhsIBPVals(numTestDofs); for (int i = 0; i< numTestDofs; i++) { rhsIBPVals(i) = rhsIBPValues(0,i); // cout << "riesz rhs values = " << rieszRHS[cellID](i) << ", rhsIBPValues = " << rhsIBPVals(i) << ", riesz returned values = " << rieszValues(0,i) << endl; } bool fcsAgree = TestSuite::fcsAgree(rieszRHS[cellID],rhsIBPVals,tol,maxDiff); if (!fcsAgree) { success=false; cout << "Failed mixed term consistency test with maxDiff = " << maxDiff << " on cellID " << cellID<< endl; } } return allSuccess(success); }
// tests Riesz inversion by integration by parts bool LinearTermTests::testRieszInversion() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 1; int pToAdd = 1; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 1; int horizontalCells = nCells, verticalCells = nCells; // create a pointer to a new mesh: Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh)); vector<GlobalIndexType> cellIDs; vector<ElementPtr> elems = myMesh->activeElements(); vector<ElementPtr>::iterator elemIt; for (elemIt=elems.begin(); elemIt!=elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); cellIDs.push_back(cellID); } bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); LinearTermPtr integrand = Teuchos::rcp(new LinearTerm);// residual LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual vector<double> e1(2); // (1,0) vector<double> e2(2); // (0,1) e1[0] = 1; e2[1] = 1; FunctionPtr n = Function::normal(); FunctionPtr X = Function::xn(1); FunctionPtr Y = Function::yn(1); FunctionPtr testFxn1 = X; FunctionPtr testFxn2 = Y; FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy(); FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2; integrand->addTerm(divTestFxn*v); integrandIBP->addTerm(vectorTest*n*v - vectorTest*v->grad()); // boundary term IPPtr sobolevIP = Teuchos::rcp(new IP); sobolevIP->addTerm(v); sobolevIP->addTerm(tau); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrand)); // riesz->setPrintOption(true); riesz->computeRieszRep(); Teuchos::RCP<RieszRep> rieszIBP = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrandIBP)); riesz->setFunctional(integrandIBP); // rieszIBP->setPrintOption(true); rieszIBP->computeRieszRep(); FunctionPtr rieszOrigFxn = RieszRep::repFunction(v,riesz); FunctionPtr rieszIBPFxn = RieszRep::repFunction(v,rieszIBP); int numCells = basisCache->getPhysicalCubaturePoints().dimension(0); int numPts = basisCache->getPhysicalCubaturePoints().dimension(1); FieldContainer<double> valOriginal( numCells, numPts); FieldContainer<double> valIBP( numCells, numPts); rieszOrigFxn->values(valOriginal,basisCache); rieszIBPFxn->values(valIBP,basisCache); double maxDiff; double tol = 1e-14; success = TestSuite::fcsAgree(valOriginal,valIBP,tol,maxDiff); if (success==false) { cout << "Failed TestRieszInversion with maxDiff = " << maxDiff << endl; } return success; }
void LinearTermTests::setup() { // VarPtr v1, v2, v3; // HGRAD members (test variables) // VarPtr q1, q2, q3; // HDIV members (test variables) // VarPtr u1, u2, u3; // L2 members (trial variables) // VarPtr u1_hat, u2_hat; // trace variables // VarPtr u3_hat_n; // flux variable // // FunctionPtr sine_x; sine_x = Teuchos::rcp( new Sine_x ); cos_y = Teuchos::rcp( new Cosine_y ); VarFactoryPtr varFactory = VarFactory::varFactory(); q1 = varFactory->testVar("q_1", HDIV); q2 = varFactory->testVar("q_2", HDIV); q3 = varFactory->testVar("q_3", HDIV); v1 = varFactory->testVar("v_1", HGRAD); v2 = varFactory->testVar("v_2", HGRAD); v3 = varFactory->testVar("v_3", HGRAD); u1 = varFactory->fieldVar("u_1", HGRAD); u2 = varFactory->fieldVar("u_2", HGRAD); u3 = varFactory->fieldVar("u_3", HGRAD); u1_hat = varFactory->traceVar("\\widehat{u}_1"); u2_hat = varFactory->traceVar("\\widehat{u}_2"); u3_hat_n = varFactory->fluxVar("\\widehat{u}_3n"); bf = Teuchos::rcp(new BF(varFactory)); // made-up bf for Mesh + previous solution tests bf->addTerm(u1_hat, q1->dot_normal()); bf->addTerm(u1, q1->x()); bf->addTerm(u2, q1->y()); bf->addTerm(u3_hat_n, v1); bf->addTerm(u3, v1); // DofOrderingFactory discreteSpaceFactory(bf); int polyOrder = 3, testToAdd = 2; Teuchos::RCP<shards::CellTopology> quadTopoPtr; // quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() )); // define nodes for mesh FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = -1.0; // x1 quadPoints(0,1) = -1.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = -1.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = -1.0; quadPoints(3,1) = 1.0; int horizontalElements = 2, verticalElements = 2; mesh = MeshFactory::buildQuadMesh(quadPoints, horizontalElements, verticalElements, bf, polyOrder+1, polyOrder+1+testToAdd); ElementTypePtr elemType = mesh->getElement(0)->elementType(); trialOrder = elemType->trialOrderPtr; testOrder = elemType->testOrderPtr; basisCache = Teuchos::rcp(new BasisCache(elemType, mesh)); vector<GlobalIndexType> cellIDs; cellIDs.push_back(0); cellIDs.push_back(1); cellIDs.push_back(2); cellIDs.push_back(3); bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(mesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); }
bool LinearTermTests::testRieszInversionAsProjection() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); double eps = .01; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 2; int pToAdd = 2; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 2; int horizontalCells = nCells, verticalCells = nCells; // create a new mesh: MeshPtr myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = myMesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh)); vector<GlobalIndexType> cellIDs = myMesh->cellIDsOfTypeGlobal(elemType); bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); LinearTermPtr integrand = Teuchos::rcp(new LinearTerm); // residual FunctionPtr x = Function::xn(1); FunctionPtr y = Function::yn(1); FunctionPtr testFxn1 = x; FunctionPtr testFxn2 = y; FunctionPtr fxnToProject = x * y + 1.0; integrand->addTerm(fxnToProject * v); IPPtr ip_L2 = Teuchos::rcp(new IP); ip_L2->addTerm(v); ip_L2->addTerm(tau); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, ip_L2, integrand)); riesz->computeRieszRep(); FunctionPtr rieszFxn = RieszRep::repFunction(v,riesz); int numCells = basisCache->getPhysicalCubaturePoints().dimension(0); int numPts = basisCache->getPhysicalCubaturePoints().dimension(1); FieldContainer<double> valProject( numCells, numPts ); FieldContainer<double> valExpected( numCells, numPts ); rieszFxn->values(valProject,basisCache); fxnToProject->values(valExpected,basisCache); // int rank = Teuchos::GlobalMPISession::getRank(); // if (rank==0) cout << "physicalCubaturePoints:\n" << basisCache->getPhysicalCubaturePoints(); double maxDiff; double tol = 1e-12; success = TestSuite::fcsAgree(valProject,valExpected,tol,maxDiff); if (success==false) { cout << "Failed Riesz Inversion Projection test with maxDiff = " << maxDiff << endl; serializeOutput("valExpected", valExpected); serializeOutput("valProject", valProject); serializeOutput("physicalPoints", basisCache->getPhysicalCubaturePoints()); } return allSuccess(success); }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // { // // 1D tests // CellTopoPtrLegacy line_2 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Line<2> >() ) ); // // let's draw a line // vector<double> v0 = makeVertex(0); // vector<double> v1 = makeVertex(1); // vector<double> v2 = makeVertex(2); // vector< vector<double> > vertices; // vertices.push_back(v0); // vertices.push_back(v1); // vertices.push_back(v2); // vector<unsigned> line1VertexList; // vector<unsigned> line2VertexList; // line1VertexList.push_back(0); // line1VertexList.push_back(1); // line2VertexList.push_back(1); // line2VertexList.push_back(2); // vector< vector<unsigned> > elementVertices; // elementVertices.push_back(line1VertexList); // elementVertices.push_back(line2VertexList); // vector< CellTopoPtrLegacy > cellTopos; // cellTopos.push_back(line_2); // cellTopos.push_back(line_2); // MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) ); // MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) ); // FunctionPtr x = Function::xn(1); // FunctionPtr function = x; // FunctionPtr fbdr = Function::restrictToCellBoundary(function); // vector<FunctionPtr> functions; // functions.push_back(function); // functions.push_back(function); // vector<string> functionNames; // functionNames.push_back("function1"); // functionNames.push_back("function2"); // // { // // HDF5Exporter exporter(mesh, "function1", false); // // exporter.exportFunction(function, "function1"); // // } // // { // // HDF5Exporter exporter(mesh, "boundary1", false); // // exporter.exportFunction(fbdr, "boundary1"); // // } // // { // // HDF5Exporter exporter(mesh, "functions1", false); // // exporter.exportFunction(functions, functionNames); // // } // } { // 2D tests // CellTopoPtrLegacy quad_4 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ) ); // CellTopoPtrLegacy tri_3 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() ) ); CellTopoPtr quad_4 = CellTopology::quad(); CellTopoPtr tri_3 = CellTopology::triangle(); // let's draw a little house vector<double> v0 = makeVertex(-1,0); vector<double> v1 = makeVertex(1,0); vector<double> v2 = makeVertex(1,2); vector<double> v3 = makeVertex(-1,2); vector<double> v4 = makeVertex(0.0,3); vector< vector<double> > vertices; vertices.push_back(v0); vertices.push_back(v1); vertices.push_back(v2); vertices.push_back(v3); vertices.push_back(v4); vector<unsigned> quadVertexList; quadVertexList.push_back(0); quadVertexList.push_back(1); quadVertexList.push_back(2); quadVertexList.push_back(3); vector<unsigned> triVertexList; triVertexList.push_back(3); triVertexList.push_back(2); triVertexList.push_back(4); vector< vector<unsigned> > elementVertices; elementVertices.push_back(quadVertexList); elementVertices.push_back(triVertexList); // vector< CellTopoPtrLegacy > cellTopos; vector< CellTopoPtr> cellTopos; cellTopos.push_back(quad_4); cellTopos.push_back(tri_3); MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) ); MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) ); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr vf = VarFactory::varFactory(); VarPtr tau = vf->testVar("tau", HDIV); VarPtr v = vf->testVar("v", HGRAD); // define trial variables VarPtr uhat = vf->traceVar("uhat"); VarPtr fhat = vf->fluxVar("fhat"); VarPtr u = vf->fieldVar("u"); VarPtr sigma = vf->fieldVar("sigma", VECTOR_L2); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr bf = Teuchos::rcp( new BF(vf) ); // tau terms: bf->addTerm(sigma, tau); bf->addTerm(u, tau->div()); bf->addTerm(-uhat, tau->dot_normal()); // v terms: bf->addTerm( sigma, v->grad() ); bf->addTerm( fhat, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = bf->graphNorm(); //////////////////// SPECIFY RHS /////////////////////// RHSPtr rhs = RHS::rhs(); FunctionPtr one = Function::constant(1.0); rhs->addTerm( one * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); FunctionPtr zero = Function::zero(); SpatialFilterPtr entireBoundary = SpatialFilter::allSpace(); bc->addDirichlet(uhat, entireBoundary, zero); //////////////////// SOLVE & REFINE /////////////////////// // Output solution Intrepid::FieldContainer<GlobalIndexType> savedCellPartition; Teuchos::RCP<Epetra_FEVector> savedLHSVector; { //////////////////// BUILD MESH /////////////////////// int H1Order = 4, pToAdd = 2; Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh (meshTopology, bf, H1Order, pToAdd) ); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); RefinementStrategy refinementStrategy( solution, 0.2); HDF5Exporter exporter(mesh, "Poisson"); // exporter.exportSolution(solution, vf, 0, 2, cellIDToSubdivision(mesh, 4)); exporter.exportSolution(solution, 0, 2); mesh->saveToHDF5("MeshSave.h5"); solution->saveToHDF5("SolnSave.h5"); solution->save("PoissonProblem"); // int numRefs = 1; // for (int ref = 1; ref <= numRefs; ref++) // { // refinementStrategy.refine(commRank==0); // solution->solve(false); // mesh->saveToHDF5("MeshSave.h5"); // solution->saveToHDF5("SolnSave.h5"); // exporter.exportSolution(solution, vf, ref, 2, cellIDToSubdivision(mesh, 4)); // } mesh->globalDofAssignment()->getPartitions(savedCellPartition); savedLHSVector = solution->getLHSVector(); } { SolutionPtr loadedSolution = Solution::load(bf, "PoissonProblem"); HDF5Exporter exporter(loadedSolution->mesh(), "ProblemLoaded"); // exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedSolution->mesh(), 4)); exporter.exportSolution(loadedSolution, 0, 2); } // { // MeshPtr loadedMesh = MeshFactory::loadFromHDF5(bf, "Test0.h5"); // Teuchos::RCP<Solution> loadedSolution = Teuchos::rcp( new Solution(loadedMesh, bc, rhs, ip) ); // loadedSolution->solve(false); // HDF5Exporter exporter(loadedMesh, "MeshLoaded"); // exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedMesh, 4)); // } { MeshPtr loadedMesh = MeshFactory::loadFromHDF5(bf, "MeshSave.h5"); Intrepid::FieldContainer<GlobalIndexType> loadedCellPartition; loadedMesh->globalDofAssignment()->getPartitions(loadedCellPartition); if (loadedCellPartition.size() != savedCellPartition.size()) { cout << "Error: the loaded partition has different size/shape than the saved one.\n"; cout << "loaded size: " << loadedCellPartition.size() << "; saved size: " << savedCellPartition.size() << endl; } else { bool partitionsMatch = true; for (int i=0; i<loadedCellPartition.size(); i++) { if (loadedCellPartition[i] != savedCellPartition[i]) { partitionsMatch = false; break; } } if (partitionsMatch) cout << "Saved and loaded cell partitions match!\n"; else { cout << "Saved and loaded cell partitions differ.\n"; cout << "saved:\n" << savedCellPartition; cout << "loaded:\n" << loadedCellPartition; } } Teuchos::RCP<Solution> loadedSolution = Teuchos::rcp( new Solution(loadedMesh, bc, rhs, ip) ); loadedSolution->loadFromHDF5("SolnSave.h5"); Teuchos::RCP<Epetra_FEVector> loadedLHSVector = loadedSolution->getLHSVector(); if (loadedLHSVector->Map().MinLID() != savedLHSVector->Map().MinLID()) { cout << "On rank " << commRank << ", loaded min LID = " << loadedLHSVector->Map().MinLID(); cout << ", but saved min LID = " << savedLHSVector->Map().MinLID() << endl; } else if (loadedLHSVector->Map().MaxLID() != savedLHSVector->Map().MaxLID()) { cout << "On rank " << commRank << ", loaded max LID = " << loadedLHSVector->Map().MaxLID(); cout << ", but saved max LID = " << savedLHSVector->Map().MaxLID() << endl; } else { bool globalIDsMatch = true; for (int lid = loadedLHSVector->Map().MinLID(); lid <= loadedLHSVector->Map().MaxLID(); lid++) { if (loadedLHSVector->Map().GID(lid) != savedLHSVector->Map().GID(lid)) { globalIDsMatch = false; } } if (! globalIDsMatch) { cout << "On rank " << commRank << ", loaded and saved solution vector maps differ in their global IDs.\n"; } else { cout << "On rank " << commRank << ", loaded and saved solution vector maps match in their global IDs.\n"; } bool entriesMatch = true; double tol = 1e-16; if (loadedLHSVector->Map().MinLID() != loadedLHSVector->Map().MaxLID()) { for (int lid = loadedLHSVector->Map().MinLID(); lid <= loadedLHSVector->Map().MaxLID(); lid++) { double loadedValue = (*loadedLHSVector)[0][lid]; double savedValue = (*savedLHSVector)[0][lid]; double diff = abs( loadedValue - savedValue ); if (diff > tol) { entriesMatch = false; cout << "On rank " << commRank << ", loaded and saved solution vectors differ in entry with lid " << lid; cout << "; loaded value = " << loadedValue << "; saved value = " << savedValue << ".\n"; } } if (entriesMatch) { cout << "On rank " << commRank << ", loaded and saved solution vectors match!\n"; } else { cout << "On rank " << commRank << ", loaded and saved solution vectors do not match.\n"; } } } HDF5Exporter exporter(loadedMesh, "SolutionLoaded"); // exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedMesh, 4)); exporter.exportSolution(loadedSolution, 0, 2); } } // { // // 3D tests // CellTopoPtrLegacy hex = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<8> >() )); // // let's draw a little box // vector<double> v0 = makeVertex(0,0,0); // vector<double> v1 = makeVertex(1,0,0); // vector<double> v2 = makeVertex(1,1,0); // vector<double> v3 = makeVertex(0,1,0); // vector<double> v4 = makeVertex(0,0,1); // vector<double> v5 = makeVertex(1,0,1); // vector<double> v6 = makeVertex(1,1,1); // vector<double> v7 = makeVertex(0,1,1); // vector< vector<double> > vertices; // vertices.push_back(v0); // vertices.push_back(v1); // vertices.push_back(v2); // vertices.push_back(v3); // vertices.push_back(v4); // vertices.push_back(v5); // vertices.push_back(v6); // vertices.push_back(v7); // vector<unsigned> hexVertexList; // hexVertexList.push_back(0); // hexVertexList.push_back(1); // hexVertexList.push_back(2); // hexVertexList.push_back(3); // hexVertexList.push_back(4); // hexVertexList.push_back(5); // hexVertexList.push_back(6); // hexVertexList.push_back(7); // // vector<unsigned> triVertexList; // // triVertexList.push_back(2); // // triVertexList.push_back(3); // // triVertexList.push_back(4); // vector< vector<unsigned> > elementVertices; // elementVertices.push_back(hexVertexList); // // elementVertices.push_back(triVertexList); // vector< CellTopoPtrLegacy > cellTopos; // cellTopos.push_back(hex); // // cellTopos.push_back(tri_3); // MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) ); // MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) ); // FunctionPtr x = Function::xn(1); // FunctionPtr y = Function::yn(1); // FunctionPtr z = Function::zn(1); // FunctionPtr function = x + y + z; // FunctionPtr fbdr = Function::restrictToCellBoundary(function); // FunctionPtr vect = Function::vectorize(x, y, z); // vector<FunctionPtr> functions; // functions.push_back(function); // functions.push_back(vect); // vector<string> functionNames; // functionNames.push_back("function"); // functionNames.push_back("vect"); // // { // // HDF5Exporter exporter(mesh, "function3", false); // // exporter.exportFunction(function, "function3"); // // } // // { // // HDF5Exporter exporter(mesh, "boundary3", false); // // exporter.exportFunction(fbdr, "boundary3"); // // } // // { // // HDF5Exporter exporter(mesh, "vect3", false); // // exporter.exportFunction(vect, "vect3"); // // } // // { // // HDF5Exporter exporter(mesh, "functions3", false); // // exporter.exportFunction(functions, functionNames); // // } // } }
int main(int argc, char *argv[]) { Teuchos::GlobalMPISession mpiSession(&argc, &argv, 0); int spaceDim = 2; int meshWidth = 2; bool conformingTraces = true; int H1Order = 2, delta_k = 3; double domainWidth = 1.0e-3; bool diagScaling = false; double h = domainWidth / meshWidth; double weight = h / 4.0; // ratio of area of square with sidelength h to its perimeter double sigma_weight = 1.0; // h / 4.0; // sigma = sigma_weight * u->grad() Space uHatSpace = conformingTraces ? HGRAD : L2; VarFactoryPtr vf = VarFactory::varFactory(); // fields VarPtr u = vf->fieldVar("u"); VarPtr sigma = vf->fieldVar("sigma", VECTOR_L2); // traces VarPtr u_hat = vf->traceVar("u_hat", uHatSpace); VarPtr sigma_n = vf->fluxVar("sigma_n"); // tests VarPtr v = vf->testVar("v", HGRAD); VarPtr tau = vf->testVar("tau", HDIV); BFPtr bf = BF::bf(vf); // standard BF: // bf->addTerm(sigma, v->grad()); // bf->addTerm(sigma_n, v); // // bf->addTerm(sigma, tau); // bf->addTerm(u, tau->div()); // bf->addTerm(-u_hat, tau->dot_normal()); // weighted BF: bf->addTerm(sigma, v->grad()); bf->addTerm(weight * sigma_n, v); bf->addTerm(sigma, tau); bf->addTerm(sigma_weight * u, tau->div()); bf->addTerm(- sigma_weight * weight * u_hat, tau->dot_normal()); IPPtr ip = IP::ip(); // standard IP: ip->addTerm(tau + v->grad()); ip->addTerm(tau->div()); ip->addTerm(v); ip->addTerm(tau); // weighted IP: // ip->addTerm(tau + v->grad()); // ip->addTerm(sigma_weight * tau->div()); // ip->addTerm(max(sigma_weight,1e-3) * v); // ip->addTerm(sigma_weight * weight * tau); BCPtr bc = BC::bc(); bc->addDirichlet(u_hat, SpatialFilter::allSpace(), Function::zero()); RHSPtr rhs = RHS::rhs(); rhs->addTerm(1.0 * sigma_weight * v); vector<double> dimensions(spaceDim,domainWidth); vector<int> elementCounts(spaceDim,meshWidth); MeshPtr mesh = MeshFactory::rectilinearMesh(bf, dimensions, elementCounts, H1Order, delta_k); SolutionPtr soln = Solution::solution(mesh, bc, rhs, ip); soln->setUseCondensedSolve(true); soln->initializeLHSVector(); soln->initializeStiffnessAndLoad(); soln->populateStiffnessAndLoad(); Teuchos::RCP<Epetra_RowMatrix> stiffness = soln->getStiffnessMatrix(); double condNumber = conditionNumberLAPACK(*stiffness, diagScaling); cout << "condest (1-norm): " << condNumber << endl; return 0; }
PoissonFormulation::PoissonFormulation(int spaceDim, bool useConformingTraces, PoissonFormulationChoice formulationChoice) { _spaceDim = spaceDim; if (formulationChoice == ULTRAWEAK) { Space tauSpace = (spaceDim > 1) ? HDIV : HGRAD; Space phi_hat_space = useConformingTraces ? HGRAD : L2; Space psiSpace = (spaceDim > 1) ? VECTOR_L2 : L2; // fields VarPtr phi; VarPtr psi; // traces VarPtr phi_hat, psi_n_hat; // tests VarPtr q; VarPtr tau; VarFactoryPtr vf = VarFactory::varFactory(); phi = vf->fieldVar(S_PHI); psi = vf->fieldVar(S_PSI, psiSpace); TFunctionPtr<double> parity = TFunction<double>::sideParity(); if (spaceDim > 1) phi_hat = vf->traceVar(S_PHI_HAT, phi, phi_hat_space); else phi_hat = vf->fluxVar(S_PHI_HAT, phi * (Function::normal_1D() * parity), phi_hat_space); // for spaceDim==1, the "normal" component is in the flux-ness of phi_hat (it's a plus or minus 1) TFunctionPtr<double> n = TFunction<double>::normal(); if (spaceDim > 1) psi_n_hat = vf->fluxVar(S_PSI_N_HAT, psi * (n * parity)); else psi_n_hat = vf->fluxVar(S_PSI_N_HAT, psi * (Function::normal_1D() * parity)); q = vf->testVar(S_Q, HGRAD); tau = vf->testVar(S_TAU, tauSpace); _poissonBF = Teuchos::rcp( new BF(vf) ); if (spaceDim==1) { // for spaceDim==1, the "normal" component is in the flux-ness of phi_hat (it's a plus or minus 1) _poissonBF->addTerm(phi, tau->dx()); _poissonBF->addTerm(psi, tau); _poissonBF->addTerm(-phi_hat, tau); _poissonBF->addTerm(-psi, q->dx()); _poissonBF->addTerm(psi_n_hat, q); } else { _poissonBF->addTerm(phi, tau->div()); _poissonBF->addTerm(psi, tau); _poissonBF->addTerm(-phi_hat, tau->dot_normal()); _poissonBF->addTerm(-psi, q->grad()); _poissonBF->addTerm(psi_n_hat, q); } } else if ((formulationChoice == PRIMAL) || (formulationChoice == CONTINUOUS_GALERKIN)) { // field VarPtr phi; // flux VarPtr psi_n_hat; // tests VarPtr q; VarFactoryPtr vf = VarFactory::varFactory(); phi = vf->fieldVar(S_PHI, HGRAD); TFunctionPtr<double> parity = TFunction<double>::sideParity(); TFunctionPtr<double> n = TFunction<double>::normal(); if (formulationChoice == PRIMAL) { if (spaceDim > 1) psi_n_hat = vf->fluxVar(S_PSI_N_HAT, phi->grad() * (n * parity)); else psi_n_hat = vf->fluxVar(S_PSI_N_HAT, phi->dx() * (Function::normal_1D() * parity)); } q = vf->testVar(S_Q, HGRAD); _poissonBF = BF::bf(vf); _poissonBF->addTerm(-phi->grad(), q->grad()); if (formulationChoice == CONTINUOUS_GALERKIN) { FunctionPtr boundaryIndicator = Function::meshBoundaryCharacteristic(); _poissonBF->addTerm(phi->grad() * n, boundaryIndicator * q); } else // primal { _poissonBF->addTerm(psi_n_hat, q); } } else { TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "Unsupported PoissonFormulationChoice"); } }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif int commRank = Teuchos::GlobalMPISession::getRank(); Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to. Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options // problem parameters: double mu = 0.1; double permCoef = 1e4; int numRefs = 0; int k = 2, delta_k = 2; string norm = "Graph"; cmdp.setOption("polyOrder",&k,"polynomial order for field variable u"); cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment"); cmdp.setOption("numRefs",&numRefs,"number of refinements"); cmdp.setOption("norm", &norm, "norm"); cmdp.setOption("mu", &mu, "mu"); cmdp.setOption("permCoef", &permCoef, "Permeability coefficient"); if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) { #ifdef HAVE_MPI MPI_Finalize(); #endif return -1; } FunctionPtr zero = TFunction<double>::zero(); FunctionPtr one = TFunction<double>::constant(1); FunctionPtr sin2pix = Teuchos::rcp( new Sin_ax(2*pi) ); FunctionPtr cos2pix = Teuchos::rcp( new Cos_ax(2*pi) ); FunctionPtr sin2piy = Teuchos::rcp( new Sin_ay(2*pi) ); FunctionPtr cos2piy = Teuchos::rcp( new Cos_ay(2*pi) ); FunctionPtr u1_exact = sin2pix*cos2piy; FunctionPtr u2_exact = -cos2pix*sin2piy; FunctionPtr x2 = TFunction<double>::xn(2); FunctionPtr y2 = TFunction<double>::yn(2); FunctionPtr p_exact = x2*y2 - 1./9; FunctionPtr permInv = permCoef*(sin2pix + 1.1); VarFactoryPtr vf = VarFactory::varFactory(); //fields: VarPtr sigma1 = vf->fieldVar("sigma1", VECTOR_L2); VarPtr sigma2 = vf->fieldVar("sigma2", VECTOR_L2); VarPtr u1 = vf->fieldVar("u1", L2); VarPtr u2 = vf->fieldVar("u2", L2); VarPtr p = vf->fieldVar("p", L2); // traces: VarPtr u1hat = vf->traceVar("u1hat"); VarPtr u2hat = vf->traceVar("u2hat"); VarPtr t1c = vf->fluxVar("t1c"); VarPtr t2c = vf->fluxVar("t2c"); // test: VarPtr v1 = vf->testVar("v1", HGRAD); VarPtr v2 = vf->testVar("v2", HGRAD); VarPtr tau1 = vf->testVar("tau1", HDIV); VarPtr tau2 = vf->testVar("tau2", HDIV); VarPtr q = vf->testVar("q", HGRAD); BFPtr bf = Teuchos::rcp( new BF(vf) ); bf->addTerm(1./mu*sigma1, tau1); bf->addTerm(1./mu*sigma2, tau2); bf->addTerm(u1, tau1->div()); bf->addTerm(u2, tau2->div()); bf->addTerm(-u1hat, tau1->dot_normal()); bf->addTerm(-u2hat, tau2->dot_normal()); bf->addTerm(sigma1, v1->grad()); bf->addTerm(sigma2, v2->grad()); bf->addTerm(-p, v1->dx()); bf->addTerm(-p, v2->dy()); bf->addTerm(t1c, v1); bf->addTerm(t2c, v2); bf->addTerm(mu*permInv*u1, v1); bf->addTerm(mu*permInv*u2, v2); bf->addTerm(-u1, q->dx()); bf->addTerm(-u2, q->dy()); bf->addTerm(u1hat, q->times_normal_x()); bf->addTerm(u2hat, q->times_normal_y()); RHSPtr rhs = RHS::rhs(); BCPtr bc = BC::bc(); SpatialFilterPtr y_equals_one = SpatialFilter::matchingY(1.0); SpatialFilterPtr y_equals_zero = SpatialFilter::matchingY(0); SpatialFilterPtr x_equals_one = SpatialFilter::matchingX(1.0); SpatialFilterPtr x_equals_zero = SpatialFilter::matchingX(0.0); bc->addDirichlet(u1hat, y_equals_zero, u1_exact); bc->addDirichlet(u2hat, y_equals_zero, u2_exact); bc->addDirichlet(u1hat, x_equals_zero, u1_exact); bc->addDirichlet(u2hat, x_equals_zero, u2_exact); bc->addDirichlet(u1hat, y_equals_one, u1_exact); bc->addDirichlet(u2hat, y_equals_one, u2_exact); bc->addDirichlet(u1hat, x_equals_one, u1_exact); bc->addDirichlet(u2hat, x_equals_one, u2_exact); bc->addZeroMeanConstraint(p); MeshPtr mesh = MeshFactory::quadMesh(bf, k+1, delta_k, 1, 1, 4, 4); map<string, IPPtr> brinkmanIPs; brinkmanIPs["Graph"] = bf->graphNorm(); brinkmanIPs["Decoupled"] = Teuchos::rcp(new IP); brinkmanIPs["Decoupled"]->addTerm(tau1); brinkmanIPs["Decoupled"]->addTerm(tau2); brinkmanIPs["Decoupled"]->addTerm(tau1->div()); brinkmanIPs["Decoupled"]->addTerm(tau2->div()); brinkmanIPs["Decoupled"]->addTerm(permInv*v1); brinkmanIPs["Decoupled"]->addTerm(permInv*v2); brinkmanIPs["Decoupled"]->addTerm(v1->grad()); brinkmanIPs["Decoupled"]->addTerm(v2->grad()); brinkmanIPs["Decoupled"]->addTerm(q); brinkmanIPs["Decoupled"]->addTerm(q->grad()); // brinkmanIPs["CoupledRobust"] = Teuchos::rcp(new IP); // brinkmanIPs["CoupledRobust"]->addTerm(tau->div()-beta*v->grad()); // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(one/Function<double>::h(),Function<double>::constant(1./sqrt(epsilon)))*tau); // brinkmanIPs["CoupledRobust"]->addTerm(sqrt(epsilon)*v->grad()); // brinkmanIPs["CoupledRobust"]->addTerm(beta*v->grad()); // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(sqrt(epsilon)*one/Function<double>::h(),one)*v); IPPtr ip = brinkmanIPs[norm]; SolutionPtr soln = TSolution<double>::solution(mesh, bc, rhs, ip); double threshold = 0.20; RefinementStrategy refStrategy(soln, threshold); ostringstream refName; refName << "brinkman"; HDF5Exporter exporter(mesh,refName.str()); for (int refIndex=0; refIndex <= numRefs; refIndex++) { soln->solve(false); double energyError = soln->energyErrorTotal(); if (commRank == 0) { // if (refIndex > 0) // refStrategy.printRefinementStatistics(refIndex-1); cout << "Refinement:\t " << refIndex << " \tElements:\t " << mesh->numActiveElements() << " \tDOFs:\t " << mesh->numGlobalDofs() << " \tEnergy Error:\t " << energyError << endl; } exporter.exportSolution(soln, refIndex); if (refIndex != numRefs) refStrategy.refine(); } return 0; }
bool VectorizedBasisTestSuite::testPoisson() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr sigma_n = varFactory->fluxVar("\\widehat{\\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma = varFactory->fieldVar("\\sigma", VECTOR_L2); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // tau terms: bf->addTerm(sigma, tau); bf->addTerm(u, tau->div()); bf->addTerm(-uhat, tau->dot_normal()); // v terms: bf->addTerm( sigma, v->grad() ); bf->addTerm( -sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = bf->graphNorm(); //////////////////// SPECIFY RHS /////////////////////// RHSPtr rhs = RHS::rhs(); FunctionPtr f = Function::constant(1.0); rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr boundary = SpatialFilter::allSpace(); FunctionPtr zero = Function::zero(); bc->addDirichlet(uhat, boundary, zero); //////////////////// BUILD MESH /////////////////////// int H1Order = 3, pToAdd = 2; // define nodes for mesh FieldContainer<double> meshBoundary(4,2); meshBoundary(0,0) = 0.0; // x1 meshBoundary(0,1) = 0.0; // y1 meshBoundary(1,0) = 1.0; meshBoundary(1,1) = 0.0; meshBoundary(2,0) = 1.0; meshBoundary(2,1) = 1.0; meshBoundary(3,0) = 0.0; meshBoundary(3,1) = 1.0; int horizontalCells = 1, verticalCells = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshFactory::buildQuadMesh(meshBoundary, horizontalCells, verticalCells, bf, H1Order, H1Order+pToAdd, false); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); #ifdef USE_VTK VTKExporter exporter(solution, mesh, varFactory); #endif for (int refIndex=0; refIndex<=4; refIndex++) { solution->solve(false); #ifdef USE_VTK // output commented out because it's not properly part of the test. // stringstream outfile; // outfile << "test_" << refIndex; // exporter.exportSolution(outfile.str()); #endif if (refIndex < 4) refinementStrategy.refine(false); // don't print to console } return success; }
// tests to make sure the energy error calculated thru direct integration works for vector valued test functions too bool ScratchPadTests::testLTResidual() { double tol = 1e-11; int rank = Teuchos::GlobalMPISession::getRank(); bool success = true; int nCells = 2; double eps = .1; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // choose the mesh-independent norm even though it may have boundary layers ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; // if this is set to zero instead, we pass the test (a clue?) rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, one); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); double energyError = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution),true); // FunctionPtr uh = Function::solution(uhat,solution); // FunctionPtr fn = Function::solution(beta_n_u_minus_sigma_n,solution); // FunctionPtr uF = Function::solution(u,solution); // FunctionPtr sigma = e1*Function::solution(sigma1,solution)+e2*Function::solution(sigma2,solution); // residual->addTerm(- (fn*v - uh*tau->dot_normal())); // residual->addTerm(- (uF*(tau->div() - beta*v->grad()) + sigma*((1/eps)*tau + v->grad()))); // residual->addTerm(-(fn*v - uF*beta*v->grad() + sigma*v->grad())); // just v portion // residual->addTerm(uh*tau->dot_normal() - uF*tau->div() - sigma*((1/eps)*tau)); // just tau portion Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(); double energyErrorLT = rieszResidual->getNorm(); int cubEnrich = 0; bool testVsTest = true; FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual); // experiment by Nate: manually specify the error (this appears to produce identical results, as it should) // FunctionPtr err = e_v * e_v + e_tau * e_tau + e_v->grad() * e_v->grad() + e_tau->div() * e_tau->div(); map<int,FunctionPtr> errFxns; errFxns[v->ID()] = e_v; errFxns[tau->ID()] = e_tau; LinearTermPtr ipAtErrFxns = ip->evaluate(errFxns); FunctionPtr err = ip->evaluate(errFxns)->evaluate(errFxns); double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest)); // check that energy error computed thru Solution and through rieszRep are the same bool success1 = abs(energyError-energyErrorLT)<tol; // checks that matrix-computed and integrated errors are the same bool success2 = abs(energyErrorLT-energyErrorIntegrated)<tol; success = success1==true && success2==true; if (!success) { if (rank==0) cout << "Failed testLTResidual; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << ", and when computing through integration of the Riesz rep function, error = " << energyErrorIntegrated << endl; } // VTKExporter exporter(solution, mesh, varFactory); // exporter.exportSolution("testLTRes"); // cout << endl; return success; }
void FunctionTests::setup() { //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta_const; beta_const.push_back(2.0); beta_const.push_back(1.0); double eps = 1e-2; // standard confusion bilinear form _confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: _confusionBF->addTerm(sigma1 / eps, tau->x()); _confusionBF->addTerm(sigma2 / eps, tau->y()); _confusionBF->addTerm(u, tau->div()); _confusionBF->addTerm(-uhat, tau->dot_normal()); // v terms: _confusionBF->addTerm( sigma1, v->dx() ); _confusionBF->addTerm( sigma2, v->dy() ); _confusionBF->addTerm( beta_const * u, - v->grad() ); _confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = -1.0; // x1 quadPoints(0,1) = -1.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = -1.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = -1.0; quadPoints(3,1) = 1.0; int H1Order = 1, pToAdd = 0; int horizontalCells = 1, verticalCells = 1; // create a pointer to a new mesh: _spectralConfusionMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, _confusionBF, H1Order, H1Order+pToAdd); // some 2D test points: // setup test points: static const int NUM_POINTS_1D = 10; double x[NUM_POINTS_1D] = {-1.0,-0.8,-0.6,-.4,-.2,0,0.2,0.4,0.6,0.8}; double y[NUM_POINTS_1D] = {-0.8,-0.6,-.4,-.2,0,0.2,0.4,0.6,0.8,1.0}; _testPoints = FieldContainer<double>(NUM_POINTS_1D*NUM_POINTS_1D,2); for (int i=0; i<NUM_POINTS_1D; i++) { for (int j=0; j<NUM_POINTS_1D; j++) { _testPoints(i*NUM_POINTS_1D + j, 0) = x[i]; _testPoints(i*NUM_POINTS_1D + j, 1) = y[j]; } } _elemType = _spectralConfusionMesh->getElementType(0); vector<GlobalIndexType> cellIDs; GlobalIndexType cellID = 0; cellIDs.push_back(cellID); _basisCache = Teuchos::rcp( new BasisCache( _elemType, _spectralConfusionMesh ) ); _basisCache->setRefCellPoints(_testPoints); _basisCache->setPhysicalCellNodes( _spectralConfusionMesh->physicalCellNodesForCell(cellID), cellIDs, true ); }
void Boundary::bcsToImpose( map< GlobalIndexType, Scalar > &globalDofIndicesAndValues, TBC<Scalar> &bc, GlobalIndexType cellID, DofInterpreter* dofInterpreter) { // this is where we actually compute the BCs; the other bcsToImpose variants call this one. CellPtr cell = _mesh->getTopology()->getCell(cellID); // define a couple of important inner products: TIPPtr<Scalar> ipL2 = Teuchos::rcp( new TIP<Scalar> ); TIPPtr<Scalar> ipH1 = Teuchos::rcp( new TIP<Scalar> ); VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr trace = varFactory->traceVar("trace"); VarPtr flux = varFactory->traceVar("flux"); ipL2->addTerm(flux); ipH1->addTerm(trace); ipH1->addTerm(trace->grad()); ElementTypePtr elemType = _mesh->getElementType(cellID); DofOrderingPtr trialOrderingPtr = elemType->trialOrderPtr; vector< int > trialIDs = _mesh->bilinearForm()->trialIDs(); vector<unsigned> boundarySides = cell->boundarySides(); if (boundarySides.size() > 0) { BasisCachePtr basisCache = BasisCache::basisCacheForCell(_mesh, cellID); for (vector< int >::iterator trialIt = trialIDs.begin(); trialIt != trialIDs.end(); trialIt++) { int trialID = *(trialIt); if ( bc.bcsImposed(trialID) ) { // // DEBUGGING: keep track of which sides we impose BCs on: // set<unsigned> bcImposedSides; // // Determine global dof indices and values, in one pass per side for (int i=0; i<boundarySides.size(); i++) { unsigned sideOrdinal = boundarySides[i]; // TODO: here, we need to treat the volume basis case. /* To do this: 1. (Determine which dofs in the basis have support on the side.) 2. (Probably should resize dirichletValues to match number of dofs with support on the side.) 3. (Within coefficientsForBC, and the projection method it calls, when it's a side cache, check whether the basis being projected has a higher dimension. If so, do the same determination regarding the support of basis on the side as #1.) 4. DofInterpreter::interpretLocalBasisCoefficients() needs to handle the case that trialID has volume support, and in this case interpret the provided data appropriately. */ BasisPtr basis; int numDofsSide; if (trialOrderingPtr->getSidesForVarID(trialID).size() == 1) { // volume basis basis = trialOrderingPtr->getBasis(trialID); // get the dof ordinals for the side (interpreted as a "continuous" basis) numDofsSide = basis->dofOrdinalsForSide(sideOrdinal).size(); } else if (! trialOrderingPtr->hasBasisEntry(trialID, sideOrdinal)) { continue; } else { basis = trialOrderingPtr->getBasis(trialID,sideOrdinal); numDofsSide = basis->getCardinality(); } GlobalIndexType numCells = 1; if (numCells > 0) { FieldContainer<double> dirichletValues(numCells,numDofsSide); // project bc function onto side basis: BCPtr bcPtr = Teuchos::rcp(&bc, false); Teuchos::RCP<BCFunction<double>> bcFunction = BCFunction<double>::bcFunction(bcPtr, trialID); bcPtr->coefficientsForBC(dirichletValues, bcFunction, basis, basisCache->getSideBasisCache(sideOrdinal)); dirichletValues.resize(numDofsSide); if (bcFunction->imposeOnCell(0)) { FieldContainer<double> globalData; FieldContainer<GlobalIndexType> globalDofIndices; dofInterpreter->interpretLocalBasisCoefficients(cellID, trialID, sideOrdinal, dirichletValues, globalData, globalDofIndices); for (int globalDofOrdinal=0; globalDofOrdinal<globalDofIndices.size(); globalDofOrdinal++) { GlobalIndexType globalDofIndex = globalDofIndices(globalDofOrdinal); Scalar value = globalData(globalDofOrdinal); // sanity check: if this has been previously set, do the two values roughly agree? if (globalDofIndicesAndValues.find(globalDofIndex) != globalDofIndicesAndValues.end()) { double tol = 1e-10; Scalar prevValue = globalDofIndicesAndValues[globalDofIndex]; double absDiff = abs(prevValue - value); if (absDiff > tol) { double relativeDiff = absDiff / max(abs(prevValue),abs(value)); int rank = _mesh->Comm()->MyPID(); if (relativeDiff > tol) { cout << "WARNING: in Boundary::bcsToImpose(), inconsistent values for BC: " << prevValue << " and "; cout << value << " prescribed for global dof index " << globalDofIndex; cout << " on rank " << rank << endl; } } } globalDofIndicesAndValues[globalDofIndex] = value; } } } } } } } }
PressurelessStokesFormulation::PressurelessStokesFormulation(int spaceDim) { _spaceDim = spaceDim; if ((spaceDim != 2) && (spaceDim != 3)) { TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "spaceDim must be 2 or 3"); } // declare all possible variables -- will only create the ones we need for spaceDim // fields VarPtr u1, u2, u3; VarPtr sigma11, sigma12, sigma13; VarPtr sigma22, sigma23; VarPtr sigma33; // traces VarPtr u1_hat, u2_hat, u3_hat; VarPtr t1n, t2n, t3n; // tests VarPtr v1, v2, v3; VarPtr tau11, tau12, tau13; VarPtr tau22, tau23; VarPtr tau33; VarFactoryPtr vf = VarFactory::varFactory(); u1 = vf->fieldVar(S_U1); u2 = vf->fieldVar(S_U2); if (spaceDim==3) u3 = vf->fieldVar(S_U3); sigma11 = vf->fieldVar(S_SIGMA11); sigma12 = vf->fieldVar(S_SIGMA12); sigma22 = vf->fieldVar(S_SIGMA22); if (spaceDim==3) { sigma13 = vf->fieldVar(S_SIGMA13); sigma23 = vf->fieldVar(S_SIGMA23); sigma33 = vf->fieldVar(S_SIGMA33); } u1_hat = vf->traceVar(S_U1_HAT, 1.0 * u1, L2); u2_hat = vf->traceVar(S_U2_HAT, 1.0 * u2, L2); if (spaceDim==3) u3_hat = vf->traceVar(S_U3_HAT, 1.0 * u3, L2); TFunctionPtr<double> n = TFunction<double>::normal(); LinearTermPtr sigma1n, sigma2n, sigma3n; if (spaceDim==2) { sigma1n = sigma11 * n->x() + sigma12 * n->y(); sigma2n = sigma12 * n->x() + sigma22 * n->y(); } else { sigma1n = sigma11 * n->x() + sigma12 * n->y() + sigma13 * n->z(); sigma2n = sigma12 * n->x() + sigma22 * n->y() + sigma23 * n->z(); sigma3n = sigma13 * n->x() + sigma23 * n->y() + sigma33 * n->z(); } t1n = vf->fluxVar(S_TN1_HAT, sigma1n); t2n = vf->fluxVar(S_TN2_HAT, sigma2n); if (spaceDim==3) t3n = vf->fluxVar(S_TN3_HAT, sigma3n); v1 = vf->testVar(S_V1, HGRAD); v2 = vf->testVar(S_V2, HGRAD); if (spaceDim==3) v3 = vf->testVar(S_V3, HGRAD); tau11 = vf->testVar(S_TAU11, HGRAD); tau12 = vf->testVar(S_TAU12, HGRAD); tau22 = vf->testVar(S_TAU22, HGRAD); if (spaceDim==3) { tau13 = vf->testVar(S_TAU13, HGRAD); tau23 = vf->testVar(S_TAU23, HGRAD); tau33 = vf->testVar(S_TAU33, HGRAD); } _stokesBF = Teuchos::rcp( new BF(vf) ); // v1 _stokesBF->addTerm(-sigma11, v1->dx()); _stokesBF->addTerm(-sigma12, v1->dy()); if (spaceDim==3) { _stokesBF->addTerm(-sigma13, v1->dz()); } _stokesBF->addTerm(t1n, v1); // v2 _stokesBF->addTerm(-sigma12, v2->dx()); _stokesBF->addTerm(-sigma22, v2->dy()); if (spaceDim==3) { _stokesBF->addTerm(-sigma23, v2->dz()); } _stokesBF->addTerm(t2n, v2); // v3 if (spaceDim==3) { _stokesBF->addTerm(-sigma13, v3->dx()); _stokesBF->addTerm(-sigma23, v3->dy()); _stokesBF->addTerm(-sigma33, v3->dz()); _stokesBF->addTerm(t3n, v3); } LinearTermPtr p; // pressure term, the negative weighted trace of tensor sigma if (spaceDim==2) { p = -0.5 * sigma11 + -0.5 * sigma22; } else { p = -(1.0/3.0) * sigma11 + -(1.0/3.0) * sigma22 + -(1.0/3.0) * sigma33; } LinearTermPtr tau1n, tau2n, tau3n; LinearTermPtr div_tau1, div_tau2, div_tau3; if (spaceDim==2) { tau1n = tau11 * n->x() + tau12 * n->y(); tau2n = tau12 * n->x() + tau22 * n->y(); div_tau1 = tau11->dx() + tau12->dy(); div_tau2 = tau12->dx() + tau22->dy(); } else { tau1n = tau11 * n->x() + tau12 * n->y() + tau13 * n->z(); tau2n = tau12 * n->x() + tau22 * n->y() + tau23 * n->z(); tau3n = tau13 * n->x() + tau23 * n->y() + tau33 * n->z(); div_tau1 = tau11->dx() + tau12->dy() + tau13->dz(); div_tau2 = tau12->dx() + tau22->dy() + tau23->dz(); div_tau3 = tau13->dx() + tau23->dy() + tau33->dz(); } // tau1j _stokesBF->addTerm(sigma11, tau11); _stokesBF->addTerm(sigma12, tau12); if (spaceDim==3) _stokesBF->addTerm(sigma13, tau13); _stokesBF->addTerm(2 * u1, div_tau1); _stokesBF->addTerm(-2 * u1_hat, tau1n); _stokesBF->addTerm(p, tau11); // tau2j _stokesBF->addTerm(sigma12, tau12); _stokesBF->addTerm(sigma22, tau22); if (spaceDim==3) _stokesBF->addTerm(sigma23, tau23); _stokesBF->addTerm(2 * u2, div_tau2); _stokesBF->addTerm(-2 * u2_hat, tau2n); _stokesBF->addTerm(p, tau22); // tau3j if (spaceDim==3) { _stokesBF->addTerm(sigma13, tau13); _stokesBF->addTerm(sigma23, tau23); _stokesBF->addTerm(sigma33, tau33); _stokesBF->addTerm(2 * u3, div_tau3); _stokesBF->addTerm(-2 * u3_hat, tau3n); _stokesBF->addTerm(p, tau33); } }
bool ScratchPadTests::testResidualMemoryError() { int rank = Teuchos::GlobalMPISession::getRank(); double tol = 1e-11; bool success = true; int nCells = 2; double eps = 1e-2; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr robIP = Teuchos::rcp(new IP); robIP->addTerm(tau); robIP->addTerm(tau->div()); robIP->addTerm(v->grad()); robIP->addTerm(v); //////////////////// SPECIFY RHS /////////////////////// FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = zero; // FunctionPtr f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new LRInflowSquareBoundary ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new LROutflowSquareBoundary); FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*one); bc->addDirichlet(uhat, outflowBoundary, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); // mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); solution->solve(false); mesh->registerSolution(solution); double energyErr1 = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual); double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); refinementStrategy.refine(); solution->solve(false); double energyErr2 = solution->energyErrorTotal(); // if energy error rises if (energyErr1 < energyErr2) { if (rank==0) cout << "energy error increased from " << energyErr1 << " to " << energyErr2 << " after refinement.\n"; success = false; } return success; }
// tests to make sure that the rieszNorm computed via matrices is the same as the one computed thru direct integration bool ScratchPadTests::testRieszIntegration() { double tol = 1e-11; bool success = true; int nCells = 2; double eps = .25; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // just H1 projection ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// LinearTermPtr lt = Teuchos::rcp(new LinearTerm); FunctionPtr fxn = Function::xn(1); // fxn = x lt->addTerm(fxn*v + fxn->grad()*v->grad()); lt->addTerm(fxn*tau->x() + fxn*tau->y() + (fxn->dx() + fxn->dy())*tau->div()); Teuchos::RCP<RieszRep> rieszLT = Teuchos::rcp(new RieszRep(mesh, ip, lt)); rieszLT->computeRieszRep(); double rieszNorm = rieszLT->getNorm(); FunctionPtr e_v = RieszRep::repFunction(v,rieszLT); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszLT); map<int,FunctionPtr> repFxns; repFxns[v->ID()] = e_v; repFxns[tau->ID()] = e_tau; double integratedNorm = sqrt((lt->evaluate(repFxns,false))->integrate(mesh,5,true)); success = abs(rieszNorm-integratedNorm)<tol; if (success==false) { cout << "Failed testRieszIntegration; riesz norm is computed to be = " << rieszNorm << ", while using integration it's computed to be " << integratedNorm << endl; return success; } return success; }