示例#1
0
/*  Draw the node by rendering the children.  */
void VertexBufferNode::draw( VertexBufferState& state ) const
{
    if ( state.stopRendering( ))
        return;

    _left->draw( state );
    _right->draw( state );
}
/*  Draw the leaf.  */
void VertexBufferLeaf::draw( VertexBufferState& state ) const
{
    if ( state.stopRendering( ))
        return;
    
    switch( state.getRenderMode() )
    {
    case RENDER_MODE_IMMEDIATE:
        renderImmediate( state );
        return;
    case RENDER_MODE_BUFFER_OBJECT:
        renderBufferObject( state );
        return;
    case RENDER_MODE_DISPLAY_LIST:
    default:
        renderDisplayList( state );
        return;
    }
}
示例#3
0
// #define LOGCULL
void VertexBufferRoot::cullDraw( VertexBufferState& state ) const
{
    _beginRendering( state );
    
#ifdef LOGCULL
    size_t verticesRendered = 0;
    size_t verticesOverlap  = 0;
#endif

    const Range& range = state.getRange();
    FrustumCuller culler;
    culler.setup( state.getProjectionModelViewMatrix( ));

    // start with root node
    std::vector< const mesh::VertexBufferBase* > candidates;
    candidates.push_back( this );

    while( !candidates.empty() )
    {
        if( state.stopRendering( ))
            return;

        const mesh::VertexBufferBase* treeNode = candidates.back();
        candidates.pop_back();
            
        // completely out of range check
        if( treeNode->getRange()[0] >= range[1] ||
            treeNode->getRange()[1] < range[0] )
        {
            continue;
        }

        // bounding sphere view frustum culling
        const vmml::Visibility visibility = state.useFrustumCulling() ?
                            culler.test_sphere( treeNode->getBoundingSphere( )) :
                            vmml::VISIBILITY_FULL;
        switch( visibility )
        {
            case vmml::VISIBILITY_FULL:
                // if fully visible and fully in range, render it
                if( treeNode->getRange()[0] >= range[0] && 
                    treeNode->getRange()[1] <  range[1] )
                {
                    treeNode->draw( state );
                    //treeNode->drawBoundingSphere( state );
#ifdef LOGCULL
                    verticesRendered += treeNode->getNumberOfVertices();
#endif
                    break;
                }
                // partial range, fall through to partial visibility

            case vmml::VISIBILITY_PARTIAL:
            {
                const mesh::VertexBufferBase* left  = treeNode->getLeft();
                const mesh::VertexBufferBase* right = treeNode->getRight();
            
                if( !left && !right )
                {
                    if( treeNode->getRange()[0] >= range[0] )
                    {
                        treeNode->draw( state );
                        //treeNode->drawBoundingSphere( state );
#ifdef LOGCULL
                        verticesRendered += treeNode->getNumberOfVertices();
                        if( visibility == vmml::VISIBILITY_PARTIAL )
                            verticesOverlap  += treeNode->getNumberOfVertices();
#endif
                    }
                    // else drop, to be drawn by 'previous' channel
                }
                else
                {
                    if( left )
                        candidates.push_back( left );
                    if( right )
                        candidates.push_back( right );
                }
                break;
            }
            case vmml::VISIBILITY_NONE:
                // do nothing
                break;
        }
    }
    
    _endRendering( state );

#ifdef LOGCULL
    const size_t verticesTotal = model->getNumberOfVertices();
    MESHINFO
        << getName() << " rendered " << verticesRendered * 100 / verticesTotal
        << "% of model, overlap <= " << verticesOverlap * 100 / verticesTotal
        << "%" << std::endl;
#endif    
}