示例#1
0
bool rtree_callback(Node* neighbour,void* w){
  double h;
  double distance;
  Metric m;
  Node *individual,*parent;
  Wrapper* wrapper;

  wrapper = static_cast<Wrapper*>(w);
  individual = wrapper->get_individual();
  parent = wrapper->get_parent();
  h = individual->get_size();
  m = individual->get_metric();

  if(neighbour!=parent){
    distance = infinity_distance(individual->get_point(),neighbour->get_point(),m);
	if(distance<k1*h){
	  wrapper->set_ok(0);
	  return false;
	}
  }

  return true;
}
示例#2
0
void Filler::treat_region(GRegion* gr){

  int NumSmooth = CTX::instance()->mesh.smoothCrossField;
  std::cout << "NumSmooth = " << NumSmooth << std::endl ;
  if(NumSmooth && (gr->dim() == 3)){
    double scale = gr->bounds().diag()*1e-2;
    Frame_field::initRegion(gr,NumSmooth);
    Frame_field::saveCrossField("cross0.pos",scale);

    Frame_field::smoothRegion(gr,NumSmooth);
    Frame_field::saveCrossField("cross1.pos",scale);
  }

#if defined(HAVE_RTREE)
  unsigned int i;
  int j;
  int count;
  int limit;
  bool ok2;
  double x,y,z;
  SPoint3 point;
  Node *node,*individual,*parent;
  MVertex* vertex;
  MElement* element;
  MElementOctree* octree;
  deMeshGRegion deleter;
  Wrapper wrapper;
  GFace* gf;
  std::queue<Node*> fifo;
  std::vector<Node*> spawns;
  std::vector<Node*> garbage;
  std::vector<MVertex*> boundary_vertices;
  std::set<MVertex*> temp;
  std::list<GFace*> faces;
  std::map<MVertex*,int> limits;
  std::set<MVertex*>::iterator it;
  std::list<GFace*>::iterator it2;
  std::map<MVertex*,int>::iterator it3;
  RTree<Node*,double,3,double> rtree;
  
  Frame_field::init_region(gr);
  Size_field::init_region(gr);
  Size_field::solve(gr);
  octree = new MElementOctree(gr->model());
  garbage.clear();
  boundary_vertices.clear();
  temp.clear();
  new_vertices.clear();
  faces.clear();
  limits.clear();

  faces = gr->faces();	
  for(it2=faces.begin();it2!=faces.end();it2++){
    gf = *it2;
	limit = code(gf->tag());
	for(i=0;i<gf->getNumMeshElements();i++){
	  element = gf->getMeshElement(i);
      for(j=0;j<element->getNumVertices();j++){
	    vertex = element->getVertex(j);
		temp.insert(vertex);
		limits.insert(std::pair<MVertex*,int>(vertex,limit));
	  }
	}
  }
		
  /*for(i=0;i<gr->getNumMeshElements();i++){
    element = gr->getMeshElement(i);
    for(j=0;j<element->getNumVertices();j++){
      vertex = element->getVertex(j);
      temp.insert(vertex);
    }
  }*/

  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==0){
	  boundary_vertices.push_back(*it);
	}
  }
	
  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==1){
	  boundary_vertices.push_back(*it);
	}
  }
	
  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==2){
	  boundary_vertices.push_back(*it);
	}
  }
	
  /*for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()<3){
      boundary_vertices.push_back(*it);
    }
  }*/
  //std::ofstream file("nodes.pos");
  //file << "View \"test\" {\n";	

  for(i=0;i<boundary_vertices.size();i++){
    x = boundary_vertices[i]->x();
    y = boundary_vertices[i]->y();
    z = boundary_vertices[i]->z();
    
    node = new Node(SPoint3(x,y,z));
    compute_parameters(node,gr);
	node->set_layer(0);
	
	it3 = limits.find(boundary_vertices[i]);
	node->set_limit(it3->second);
	
	rtree.Insert(node->min,node->max,node);
	fifo.push(node);
    //print_node(node,file);
  }
  
  count = 1;
  while(!fifo.empty()){
    parent = fifo.front();
	fifo.pop();
	garbage.push_back(parent);
	  
	if(parent->get_limit()!=-1 && parent->get_layer()>=parent->get_limit()){
	  continue;
	}
	  
	spawns.clear();
	spawns.resize(6);
	  
	for(i=0;i<6;i++){
	  spawns[i] = new Node();
	}
	
	create_spawns(gr,octree,parent,spawns);
	
	for(i=0;i<6;i++){
	  ok2 = 0;
	  individual = spawns[i];
	  point = individual->get_point();
	  x = point.x();
	  y = point.y();
	  z = point.z();
	  
	  if(inside_domain(octree,x,y,z)){
		compute_parameters(individual,gr);
		individual->set_layer(parent->get_layer()+1);
		individual->set_limit(parent->get_limit());
		
		if(far_from_boundary(octree,individual)){
		  wrapper.set_ok(1);
		  wrapper.set_individual(individual);
		  wrapper.set_parent(parent);
		  rtree.Search(individual->min,individual->max,rtree_callback,&wrapper);
			
		  if(wrapper.get_ok()){
		    fifo.push(individual);
		    rtree.Insert(individual->min,individual->max,individual);
			vertex = new MVertex(x,y,z,gr,0);
			new_vertices.push_back(vertex);
			ok2 = 1;
			//print_segment(individual->get_point(),parent->get_point(),file);
		  }
	    }
	  }
		
	  if(!ok2) delete individual;
	}
	
	if(count%100==0){
	  printf("%d\n",count);
	}
	count++;
  }
  
  //file << "};\n";

  int option = CTX::instance()->mesh.algo3d;
  CTX::instance()->mesh.algo3d = ALGO_3D_DELAUNAY;

  deleter(gr);
  std::vector<GRegion*> regions;
  regions.push_back(gr);
  meshGRegion mesher(regions); //?
  mesher(gr); //?
  MeshDelaunayVolume(regions);

  CTX::instance()->mesh.algo3d = option;
	
  for(i=0;i<garbage.size();i++) delete garbage[i];
  for(i=0;i<new_vertices.size();i++) delete new_vertices[i];
  new_vertices.clear();
  delete octree;
  rtree.RemoveAll();
  Size_field::clear();
  Frame_field::clear();
#endif
}