示例#1
0
void rational_fitter_parsec_multi::set_parameters(const arguments& args)
{
    _max_np = args.get_float("np", 10);
    _max_nq = args.get_float("nq", _max_np);
    _min_np = args.get_float("min-np", _max_np);
    _min_nq = args.get_float("min-nq", _min_np);
 
    _max_np = std::max<int>(_max_np, _min_np);
    _max_nq = std::max<int>(_max_nq, _min_nq);
    
    _boundary = args.get_float("boundary-constraint", 1.0f);
    _nbcores = args.get_int( "nbcores", 2 );
    _args = &args;

    {
	int argc = 1;
	char **argv = (char**)malloc((argc+1)*sizeof(char*));

	argv[0] = strdup( "./manao" );
	argv[1] = NULL;

	_dague = dague_init(_nbcores, &argc, &argv);

	free(argv[0]);
	free(argv);
    }
}
示例#2
0
文件: slice.cpp 项目: belcour/alta
		BrdfSlice(const arguments& args,
              int width, int height, int slice,
              double* content)
        : data(brdf_slice_parameters(args),
               width * height * slice),
          _width(width), _height(height), _slice(slice),
          _data(content)
		{
			// Allocate data
      if (args.is_defined("param") && parametrization().dimX() == 3)
          _phi = (M_PI / 180.0) * args.get_float("phi", 90);
      else
          _phi = 0.5*M_PI;

			// Is the position of the slice componnent (third coordinate)
			// reversed? This ensure that some params can be displayed.
      auto in_param = parametrization().input_parametrization();
			_reverse = in_param == params::ISOTROPIC_TL_TV_PROJ_DPHI ||
          in_param == params::SCHLICK_TL_TK_PROJ_DPHI   ||
          in_param == params::RETRO_TL_TVL_PROJ_DPHI;

			// Update the domain
			_max = max();
			_min = min();
		}
示例#3
0
bool rational_fitter_parallel::fit_data(const ptr<data>& dat, ptr<function>& fit, const arguments &args)
{
  ptr<rational_function> r = dynamic_pointer_cast<rational_function>(fit) ;
  if(!r)
  {
    std::cerr << "<<ERROR>> not passing the correct function class to the fitter: must be a rational_function" << std::endl ;
    return false ;
  }

  ptr<vertical_segment> d = dynamic_pointer_cast<vertical_segment>(dat) ;
  if(!d
     || d->confidence_interval_kind() != vertical_segment::ASYMMETRICAL_CONFIDENCE_INTERVAL)
  {
    std::cerr << "<<WARNING>> automatic convertion of the data object to vertical_segment," << std::endl;
    std::cerr << "<<WARNING>> we advise you to perform convertion with a separate command." << std::endl;

    size_t elem_size =
        dat->parametrization().dimX() + 3*dat->parametrization().dimY();
    double* content = new double[dat->size() * elem_size];

    for(int i=0; i<dat->size(); ++i)
    {
      const vec x = dat->get(i);

      for(int k=0; k<x.size(); ++k) {
          content[i + k] = x[k];
      }
      for(int k=0; k<dat->parametrization().dimY(); ++k) {
          content[i + k + dat->parametrization().dimX() + dat->parametrization().dimY()] =
              (1.0 - args.get_float("dt", 0.1)) * x[k + dat->parametrization().dimX()];
      }
      for(int k=0; k<dat->parametrization().dimY(); ++k) {
          content[i + k + dat->parametrization().dimX() + 2*dat->parametrization().dimY()] =
              (1.0 + args.get_float("dt", 0.1)) * x[k + dat->parametrization().dimX()];
      }
    }

    ptr<vertical_segment> vs(new vertical_segment(dat->parametrization(),
                                                  dat->size(),
                                                  std::shared_ptr<double>(content)));

    d = vs;
  }

  // XXX: FIT and D may have different values of dimX() and dimY(), but
  // this is fine: we convert values as needed in operator().
  r->setMin(d->min());
  r->setMax(d->max());

  const int _min_np = args.get_int("min-np", 10);
  const int _max_np = args.get_int("np", _min_np);
  std::cout << "<<INFO>> N in  [" << _min_np << ", " << _max_np << "]"  << std::endl ;

  const int nb_starting_points = args.get_int("nb-starting-points", 100);
  std::cout << "<<INFO>> number of data point used in start: " << nb_starting_points << std::endl;

  const int  step      = args.get_int("np-step", 1);
  const bool use_delta = args.is_defined("use_delta");

  for(int i=_min_np; i<=_max_np; i+=step)
  {
    std::cout << "<<INFO>> fit using np+nq = " << i << std::endl ;
    std::cout.flush() ;
    timer time ;
    time.start() ;

#ifdef _OPENMP
      const int nb_cores = args.get_int("nb-cores", omp_get_num_procs());
#ifdef DEBUG
    std::cout << "<<DEBUG>> will use " << nb_cores << " threads to compute the quadratic programs" << std::endl ;
#endif

    omp_set_num_threads(nb_cores) ;
#endif

    double min_delta   = std::numeric_limits<double>::max();
    double min_l2_dist = std::numeric_limits<double>::max();
    double mean_delta = 0.0;
    int nb_sol_found  = 0;
    int nb_sol_tested = 0;

    #pragma omp parallel for shared(r, args, nb_sol_found, nb_sol_tested, min_delta, mean_delta), schedule(dynamic,1)
    for(int j=1; j<i; ++j)
    {
      // Compute the number of coefficients in the numerator and in the denominator
      // from the current number of coefficients i and the current index in the
      // loop j.
      int temp_np = i - j;
      int temp_nq = j;

      //vec p(temp_np*r->dimY()), q(temp_nq*r->dimY());

      // Allocate a rational function and set it to the correct size, dimensions
      // and parametrizations.
      ptr<rational_function> rk(NULL);
      #pragma omp critical (args)
      {
        rk = dynamic_pointer_cast<rational_function>(
            ptr<function>(plugins_manager::get_function(args,
                                                        r->parametrization())));
      }
      if(!rk)
      {
          std::cerr << "<<ERROR>> unable to obtain a rational function from the plugins manager" << std::endl;
          throw;
      }

      rk->setMin(r->min()) ;
      rk->setMax(r->max()) ;

      // Set the rational function size
      rk->setSize(temp_np, temp_nq);

      double delta = 1.0;
      double linf_dist, l2_dist;
      bool is_fitted = fit_data(d, temp_np, temp_nq, rk, args, delta, linf_dist, l2_dist);
      if(is_fitted)
      {
        #pragma omp critical (r)
        {
          ++nb_sol_found ;
          mean_delta += delta ;

          std::cout << "<<INFO>> found a solution with np=" << temp_np
            << ", nq = " << temp_nq << std::endl;
          std::cout << "<<INFO>> Linf error = " << linf_dist << std::endl;
          std::cout << "<<INFO>> L2   error = " << l2_dist << std::endl;
          std::cout << "<<INFO>>      delta = " << delta << std::endl;
          std::cout << std::endl;

          // Get the solution with the minimum delta or the minimum L2 distance,
          // and update the main rational function r.
          if((use_delta && delta < min_delta) || (!use_delta && l2_dist < min_l2_dist))
          {
            min_delta   = delta ;
            min_l2_dist = l2_dist ;
            r->setSize(temp_np, temp_nq);
            r->update(rk);
          }
        }
      }

      #pragma omp critical (nb_sol_tested)
      {
        // Update the solution
        nb_sol_tested++;

        std::cout << "<<DEBUG>> nb solutions tested: " << nb_sol_tested << " / " << i << "\r";
        std::cout.flush();
      }
    }

    if(min_delta < std::numeric_limits<double>::max())
    {
      std::cout << "<<INFO>> mean delta = " << mean_delta/nb_sol_found << std::endl;
      std::cout << "<<INFO>>  min delta = " << min_delta << std::endl;
      std::cout << *(r.get()) << std::endl;

      time.stop();
      std::cout << "<<INFO>> got a fit using N = " << i << std::endl ;
      std::cout << "<<INFO>> it took " << time << std::endl ;
      std::cout << "<<INFO>> I got " << nb_sol_found << " solutions to the QP" << std::endl ;
      return true ;
    }
  }

  return false ;
}