示例#1
0
bool ode_solver::inner_loop_backward(ITaylor & solver, interval prevTime, vector<pair<interval, IVector>> & bucket) {
    interval const stepMade = solver.getStep();
    const ITaylor::CurveType& curve = solver.getCurve();
    interval domain = interval(0, 1) * stepMade;
    list<interval> intvs;
    if (prevTime.rightBound() < m_T.leftBound()) {
        interval pre_T = interval(0, m_T.leftBound() - prevTime.rightBound());
        domain.setLeftBound(m_T.leftBound() - prevTime.rightBound());
        intvs = split(domain, m_config.nra_ODE_grid_size);
        intvs.push_front(pre_T);
    } else {
        intvs = split(domain, m_config.nra_ODE_grid_size);
    }

    for (interval subsetOfDomain : intvs) {
        interval dt = prevTime + subsetOfDomain;
        IVector v = curve(subsetOfDomain);
        if (!check_invariant(v, m_inv)) {
            // TODO(soonhok): invariant
            return true;
        }
        DREAL_LOG_INFO << dt << "\t" << v;
        if (prevTime + subsetOfDomain.rightBound() > m_T.leftBound()) {
            bucket.emplace_back(dt, v);
        }
        // TODO(soonhok): visualization
        // if (m_config.nra_json) {
        //     m_trajectory.emplace_back(m_T.rightBound() - (prevTime + subsetOfDomain), v);
        // }
    }
    return false;
}
示例#2
0
// Rigorous proof of the existence of zero for second iteration of Henon map
// Instead of IMap class we use defined above class MapIterator.
void HenonProof()
{
    std::cout << "\n\n SECOND ITERATION OF HENON IMap:  \n  H(x,y) = (1 - a*x*x + y, b*x)   where a=1.4,  b=0.3 ";

    IMap Henon("par:a,b;var:x,y;fun:1-a*x*x+y,b*x;");
    Henon.setParameter("a",interval(1.4));
    Henon.setParameter("b",interval(0.3));

    MapIterator IMap(Henon, 2);

    capd::newton::Krawczyk<MapIterator> henon(IMap);

    std::cout << "\n\n KRAWCZYK PROOF \n\n ";

    DVector x(2);               // Good quess for zero for second iteration of Henon map
    x[0] = -10./3; x[1]=131./9; // It is also a center of the set.
    double size = 1.e-5;        // Size of the set in which we will search for a zero

  try{
    capd::newton::KrawczykResult code = henon.proof(x, size);
    std::cout << resultToText(code) ;
    std::cout << "\n\n afer " << henon.numberOfIterations << " iteration of Krawczyk method"
              << "\n set X " << henon.X
              << "\n Krawczyk operator K " << henon.K << std::endl;
  }
  catch(std::exception& e)
  {
     std::cout << e.what();
  }

}
示例#3
0
IVector ode_solver::extract_invariants() {
    map<Enode*, pair<double, double>> inv_map;
    for (auto inv : m_invs) {
        Enode * p = inv->getCdr()->getCdr()->getCdr()->getCdr()->getCar();
        Enode * op = p->getCar();
        bool pos = true;

        // Handle Negation
        if (op->getId() == ENODE_ID_NOT) {
            p = p->getCdr()->getCar();
            op = p->getCar();
            pos = false;
        }
        switch (op->getId()) {
        case ENODE_ID_GEQ:
        case ENODE_ID_GT:
            // Handle >= & >
            pos = !pos;
        case ENODE_ID_LEQ:
        case ENODE_ID_LT: {
            // Handle <= & <
            Enode * lhs = pos ? p->getCdr()->getCar() : p->getCdr()->getCdr()->getCar();
            Enode * rhs = pos ? p->getCdr()->getCdr()->getCar() : p->getCdr()->getCar();
            if (lhs->isVar() && rhs->isConstant()) {
                if (inv_map.find(lhs) != inv_map.end()) {
                    inv_map[lhs].second = rhs->getValue();
                } else {
                    inv_map.emplace(lhs, make_pair(lhs->getLowerBound(), rhs->getValue()));
                }
            } else if (lhs->isConstant() && rhs->isVar()) {
                if (inv_map.find(rhs) != inv_map.end()) {
                    inv_map[rhs].first = lhs->getValue();
                } else {
                    inv_map.emplace(rhs, make_pair(lhs->getValue(), rhs->getUpperBound()));
                }
            } else {
                cerr << "ode_solver::extract_invariant: error:" << p << endl;
            }
        }
            break;
        default:
            cerr << "ode_solver::extract_invariant: error" << p << endl;
        }
    }
    IVector ret (m_t_vars.size());
    unsigned i = 0;
    for (auto const & m_t_var : m_t_vars) {
        if (inv_map.find(m_t_var) != inv_map.end()) {
            auto inv = interval(inv_map[m_t_var].first, inv_map[m_t_var].second);
            DREAL_LOG_INFO << "Invariant extracted from  " << m_t_var << " = " << inv;
            ret[i++] = inv;
        } else {
            auto inv = interval(m_t_var->getLowerBound(), m_t_var->getUpperBound());
            DREAL_LOG_INFO << "Default Invariant set for " << m_t_var << " = " << inv;
            ret[i++] = inv;
        }
    }
    return ret;
}
示例#4
0
ode_solver::ODE_result ode_solver::simple_ODE_backward(IVector & X_0, IVector const & X_t, interval const & T,
                                                       IVector const & inv, vector<IFunction> & funcs) {
    // X_0 = X_0 \cup (X_t - + (d/dt Inv) * T)
    for (int i = 0; i < X_0.dimension(); i++) {
        interval & x_0 = X_0[i];
        interval const & x_t = X_t[i];
        IFunction & dxdt = funcs[i];
        for (Enode * par : m_pars) {
            double lb = get_lb(par);
            double ub = get_ub(par);
            string name = par->getCar()->getName();
            dxdt.setParameter(name, interval(lb, ub));
        }
        try {
            interval const new_x_0 = x_t - dxdt(inv) * T;
            if (!intersection(new_x_0, x_0, x_0)) {
                DREAL_LOG_INFO << "Simple_ODE: no intersection for X_0";
                return ODE_result::UNSAT;
            }
        } catch (exception& e) {
            DREAL_LOG_INFO << "Exception in Simple_ODE: " << e.what();
        }
    }
    // update
    IVector_to_varlist(X_0, m_0_vars);
    return ODE_result::SAT;
}
示例#5
0
IVector ode_solver::varlist_to_IVector(vector<Enode*> const & vars) {
    IVector intvs (vars.size());
    /* Assign current interval values */
    for (unsigned i = 0; i < vars.size(); i++) {
        Enode* const & var = vars[i];
        interval & intv = intvs[i];
        double lb = get_lb(var);
        double ub = get_ub(var);
        intv = interval(lb, ub);
        DREAL_LOG_INFO << "The interval on " << var->getCar()->getName() << ": " << intv;
    }
    return intvs;
}
示例#6
0
// For Henon map we iterate Krawczyk and Newton Interval Operators.
// In this example Newton Method requires much smaller initial set then Krawczyk to work.
void HenonMap()
{
   std::cout << "\n\n HENON map:  H(x,y) = (1 - a*x*x + y, b*x)   where a=1.4,  b=0.3 ";

   // We define henon map and set its parameters
   IMap Henon("par:a,b;var:x,y;fun:1-a*x*x+y,b*x;");
   Henon.setParameter("a", interval(1.4));
   Henon.setParameter("b",interval(0.3));

   IVector x0(2), K(2), N(2);

   // We define an initial set for iterations of taking Krawczyk Operator  
   K[0] = interval(-100,110); K[1]=interval(-100,110);

   std::cout << "\n\n Interval KRAWCZYK OPERATOR "
             << "\n for set X  = " << K;

   for(int i=1; i<=5; ++i)
   {
      x0=midVector(K);
      K = capd::newton::KrawczykOperator(x0, K, Henon);
      std::cout << "\n iteration "<< i << " = " << K;
   }

   // We define an initial set for iterations of taking Newton Operator  
   N[0]=interval(-.1,.1); N[1] = interval(0.9,1.1);

   std::cout << "\n\n Interval NEWTON OPERATOR "
             << "\n for set X = " << N;

   for(int i=1; i<=5; ++i)
   {
      x0=midVector(N);
      N = capd::newton::NewtonOperator(x0, N, Henon);
      std::cout << "\n iteration "<< i << " = " << N;
   }
}
示例#7
0
ode_solver::ODE_result ode_solver::compute_backward(vector<pair<interval, IVector>> & bucket) {
    ODE_result ret = ODE_result::SAT;
    auto start = high_resolution_clock::now();
    bool invariantViolated = false;

    try {
        // Set up VectorField
        IMap vectorField(m_diff_sys_backward);
        for (Enode * par : m_pars) {
            double lb = get_lb(par);
            double ub = get_ub(par);
            string name = par->getCar()->getName();
            vectorField.setParameter(name, interval(lb, ub));
        }
        ITaylor solver(vectorField, m_config.nra_ODE_taylor_order, .001);
        ITimeMap timeMap(solver);
        C0Rect2Set s(m_X_t);
        timeMap.stopAfterStep(true);
        timeMap.turnOnStepControl();

        // TODO(soonhok): visualization
        // if (m_config.nra_json) {
        //     m_trajectory.clear();
        //     m_trajectory.emplace_back(m_T.rightBound() - timeMap.getCurrentTime(), IVector(s));
        // }

        interval prevTime(0.);
        do {
            // Handle Timeout
            if (m_config.nra_ODE_timeout > 0.0) {
                auto end = high_resolution_clock::now();
                if (duration_cast<milliseconds>(end - start).count() >= m_config.nra_ODE_timeout) {
                    return ODE_result::TIMEOUT;
                }
            }

            // Check Invariant
            invariantViolated = !check_invariant(s, m_inv);
            if (invariantViolated) {
                // TODO(soonhok): invariant
                if (timeMap.getCurrentTime().rightBound() < m_T.leftBound()) {
                    ret = ODE_result::UNSAT;
                } else {
                    ret = ODE_result::SAT;
                }
                break;
            }

            // Control TimeStep
            timeMap.turnOnStepControl();
            if (m_stepControl > 0 && solver.getStep() < m_stepControl) {
                timeMap.turnOffStepControl();
                solver.setStep(m_stepControl);
                timeMap.setStep(m_stepControl);
            }

            // Move s toward m_T.rightBound()
            timeMap(m_T.rightBound(), s);
            if (contain_NaN(s)) { return ODE_result::SAT; }
            if (m_T.leftBound() <= timeMap.getCurrentTime().rightBound()) {
                invariantViolated = inner_loop_backward(solver, prevTime, bucket);
                if (invariantViolated) {
                    // TODO(soonhok): invariant
                    ret = ODE_result::SAT;
                    break;
                }
            }
            prevTime = timeMap.getCurrentTime();
        } while (!invariantViolated && !timeMap.completed());
    } catch (exception& e) {
        ret = ODE_result::EXCEPTION;
    }
    if (m_config.nra_json) {
        prune_trajectory(m_T, m_X_0);
    }
    return ret;
}
示例#8
0
void ode_solver::update(rp_box b) {
    m_b = b;
    m_X_0 = varlist_to_IVector(m_0_vars);
    m_X_t = varlist_to_IVector(m_t_vars);
    m_T = interval(get_lb(m_time), get_ub(m_time));
}