示例#1
0
dMatrix::dMatrix (const dMatrix & transformMatrix, const dVector & scale, const dMatrix & stretchAxis)
{
   dMatrix scaledAxis;
   scaledAxis[0] = stretchAxis[0].Scale (scale[0]);
   scaledAxis[1] = stretchAxis[1].Scale (scale[1]);
   scaledAxis[2] = stretchAxis[2].Scale (scale[2]);
   scaledAxis[3] = stretchAxis[3];
   *this = stretchAxis.Transpose() * scaledAxis * transformMatrix;
}
示例#2
0
//void dMatrix::PolarDecomposition (dMatrix& orthogonal, dMatrix& symetric) const
void dMatrix::PolarDecomposition (dMatrix & transformMatrix, dVector & scale, dMatrix & stretchAxis, const dMatrix & initialStretchAxis) const
{
   // a polar decomposition decompose matrix A = O * S
   // where S = sqrt (transpose (L) * L)
   // calculate transpose (L) * L
   dMatrix LL ((*this) * Transpose());
   // check is this si a pure uniformScale * rotation * translation
   dFloat det2 = (LL[0][0] + LL[1][1] + LL[2][2]) * (1.0f / 3.0f);
   dFloat invdet2 = 1.0f / det2;
   dMatrix pureRotation (LL);
   pureRotation[0] = pureRotation[0].Scale (invdet2);
   pureRotation[1] = pureRotation[1].Scale (invdet2);
   pureRotation[2] = pureRotation[2].Scale (invdet2);
   //dFloat soureSign = ((*this)[0] * (*this)[1]) % (*this)[2];
   dFloat sign = ((((*this)[0] * (*this)[1]) % (*this)[2]) > 0.0f) ? 1.0f : -1.0f;
   dFloat det = (pureRotation[0] * pureRotation[1]) % pureRotation[2];
   if (dAbs (det - 1.0f) < 1.e-5f)
   {
      // this is a pure scale * rotation * translation
      det = sign * dSqrt (det2);
      scale[0] = det;
      scale[1] = det;
      scale[2] = det;
      scale[3] = 1.0f;
      det = 1.0f / det;
      transformMatrix.m_front = m_front.Scale (det);
      transformMatrix.m_up = m_up.Scale (det);
      transformMatrix.m_right = m_right.Scale (det);
      transformMatrix[0][3] = 0.0f;
      transformMatrix[1][3] = 0.0f;
      transformMatrix[2][3] = 0.0f;
      transformMatrix.m_posit = m_posit;
      stretchAxis = dGetIdentityMatrix();
   }
   else
   {
      stretchAxis = LL.JacobiDiagonalization (scale, initialStretchAxis);
      // I need to deal with buy seeing of some of the Scale are duplicated
      // do this later (maybe by a given rotation around the non uniform axis but I do not know if it will work)
      // for now just us the matrix
      scale[0] = sign * dSqrt (scale[0]);
      scale[1] = sign * dSqrt (scale[1]);
      scale[2] = sign * dSqrt (scale[2]);
      scale[3] = 1.0f;
      dMatrix scaledAxis;
      scaledAxis[0] = stretchAxis[0].Scale (1.0f / scale[0]);
      scaledAxis[1] = stretchAxis[1].Scale (1.0f / scale[1]);
      scaledAxis[2] = stretchAxis[2].Scale (1.0f / scale[2]);
      scaledAxis[3] = stretchAxis[3];
      dMatrix symetricInv (stretchAxis.Transpose() * scaledAxis);
      transformMatrix = symetricInv * (*this);
      transformMatrix.m_posit = m_posit;
   }
}